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Abstract 

We present a new reliable dense disparity estimation 

algorithm which employs Gaussian scale-space with 

anisotropic disparity-field diffusion. This algorithm 

estimates edge-preserving dense disparity vectors 

using a diffusive method on iteratively Gaussian-

filtered images with a scale, i.e. the Gaussian scale-

space. 

While a Gaussian filter kernel generates a coarser 

resolution from stereo image pairs, only strong and 

meaningful boundaries are adaptively selected on the 

resolution of the filtered images. Then, coarse global 

disparity vectors are initialized using the boundary 

constraint. The per-pixel disparity vectors are 

iteratively obtained by the local adjustment of the 

global disparity vectors using an energy-minimization 

framework. The proposed algorithm preserves the 

boundaries while inner regions are smoothed using 

anisotropic disparity-field diffusion. 

In this work, the Gaussian scale-space efficiently 

avoids illegal matching on a large baseline by the 

restriction of the range.  Moreover, it prevents the 

computation from iterating into local minima of ill-

posed diffusion on large gradient areas e.g. shadow 

and texture region, etc. The experimental results 

prove the excellent localization performance 

preserving the disparity discontinuity of each object. 

1. Introduction 

As three-dimensional imaging systems are becoming 

increasingly popular, depth estimation has developed 

into a key research area. Many disparity estimation 

algorithms which intended to solve the 

correspondence problem for depth estimation have 

been developed over the last 30 years. For example, 

feature-based methods [1, 2] extract features such as 

corners, lines, curves or edges from image pairs and 

then establish correspondences between them. Their 

main advantage is the small amount of data required 

based on the accurate information, drawback is the 

insufficient information available to generate accurate 

depth. Area-based methods [3, 4, 5] can provide more 

reliable estimation performance by correlating image 

patches in relatively textured areas. Research trends to 

concentrate on hybrid area-based approaches which 

combine the above two approaches for good 

localization performance. The hybrid area-based 

approaches use some constraints between features [6], 

multiple-windows [7, 8, 9], global disparity 

constraints [10], among others.  However, 

performance is not satisfactory for producing a dense 

field with full resolution because of inherent 

localization problems due to noise, occlusions, 

textures, etc.  

In this paper, we improve the performance of hybrid 

system. To this end we employ multiple-resolutions 

and their scales to provide the best trade-off between 

the detected features and the localization performance. 

Latest research using multiple resolutions focuses on 

energy-based approaches that iteratively minimize an 

energy function with a regularization formulation [11, 

12, 13, 14, 15, 16]. This approach achieves high-

accurate results smoothing homogeneous areas and 

preserving strong features. However, local minima and 

computational cost to solve PDEs (partial differential 

equations) are very high.  

Recent energy-based approaches employ anisotropic 

diffusion as the regularization term to prevent 

important edges from over-smoothing.  Anisotropic 

diffusion methods were proposed to accomplish image 

restoration and enhancement by Perona and Malik 

[17]. The basic idea is to modify the diffusion 

coefficient at edges with steep intensity gradients. The 

method has been applied for disparity estimation and 

depth estimation. The method shows smoothed but 

detailed results in some images [12, 14, 15]. 

Unfortunately, the Perona and Malik model is still ill-

posed because of true backward diffusion in areas of 

large gradients. The model usually yields unexpected 

wrong directional diffusions on homogeneous texture 

areas. Catt´e et al. [18] solved the problem for image 
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enhancement by considering the gradient evaluation 

on the pre-filtered image by a Gaussian-filter kernel 

instead of exact intensity gradient. This method 

recently turned out to be well-posed and edges are still

enhanced [19]. The evolution using a Gaussian pre-

filtering avoids the detection and the emphasis of 

initial noise. We propose a novel algorithm to solve 

the correspondence problem for stereo image pairs. 

The proposed algorithm implements a progressive 

combination of two mentioned complementary 

contributions between the hybrid area-based approach 

and the energy-based approach. The solution is 

iteratively calculated on the multiple resolutions of a 

Gaussian scale-space. 

In a first step, Gaussian scale-space is iteratively 

generated to a coarser resolution by convolving a 

stereo image pair with the Gaussian-filter kernel. Only 

strong and meaningful boundaries are probability-

adaptively determined on the resolution of the filtered 

image. Next, coarse but trustworthy disparity vectors 

are initialized as global disparity ranges using a 

boundary constraint. Dense disparity vectors are 

obtained by iterative adjustment into a fine resolution 

using energy minimization procedure with anisotropic 

disparity-field diffusion.  

In the follow section, we describe the algorithm in 

detail using two steps: Gaussian scale-space disparity 

initialization and dense disparity estimation with 

anisotropic disparity-field diffusion 

2. Gaussian scale-space dense disparity 

estimation with anisotropic disparity-field 

diffusion 

2.1. Gaussian scale-space disparity initialization 

The scale-space theory is based on a lot of research for 

edge detection. For example, Canny [20] proposed a 

successful edge detector which uses the approximation 

by the first derivative of a Gaussian. By convolving an 

image with single Gaussian-filter, the edges are 

detected very precisely at the maximum of the gradient 

magnitude in the Gaussian-smoothed image. Witkin 

[21] developed the Canny edge detector into an 

iterative method for multi-resolution processes, i.e. 

Gaussian scale-spaces. A coarser resolution image is 

iteratively generated by convolving the image with a 

Gaussian-filter kernel. The scale parameter of 

Gaussian-filter kernel is used to control the boundary 

strength and direction to be detected. This parameter 

tuning results in strong boundaries only, which have 

larger values than can be detected in the specified 

scale [24].  

Figure 1-(a) illustrates Gaussian scale-space using 

one-dimension (i.e. a horizontal line) and its boundary 

is shown in Figure 1-(b). The boundary should be 

obtained at the position of discontinuity for the best 

localization performance. Thus, we estimate the 

position using partial differential as follows:  

First, we obtain the scale-space using standard 

deviation of the Gaussian. A two-dimensional 

Gaussian-filter kernel is defined as  

2 2 22 1 ( ) /(2 )

( , ) * ( , )

(2 ) * ( , )
x y

x y I x y

e I x y

G G
       (1) 

where ( , )x yG is the image intensity filtered by local 

convolution kernel of the Gaussian G at a scale-level 

. The first derivative of Gaussian along the x -axis 

is given in Eq. (2) and the other along y-axis is 

obtained in a similar way. 
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Since the two-dimensional gradient is a first-order 

operator / , /x y defined as a vector, the 

direction of the gradient is defined by the Euclidean 

norm of gradient which consequently indicates the 

strength of the intensity change as 
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 (a) Gaussian scale-space (a horizontal line) 

(b) boundary of the Gaussian scale-space 

Figure 1. Gaussian scale-space 

x

x
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In Eq. (3), N  represents a unit vector towards an 

arbitrary gradient direction. The gradient direction is 

perpendicular to the edge orientation and localizes the 

boundary. Thus, the equivalent function considering 

several directional derivatives can be easily expressed 

with respect to a polar coordinate system where 
2 2

( )r x y  represents the radial distance from the 

origin. The function is symmetrical and independent 

of the orientation . The prediction error is defined as  

[ ( ), ] ( cos , sin ) ( , )E r x d y d x yG G G (4)

where  is the boundary domain and d  is the 

distance of the prediction, which is proportional to the 

scale. If we consider two possible directions for the 

morphology of a boundary, forward is  and 

backward is given as . The probability P  is 

assigned in a proportion to their prediction errors [25] 

in Eq. (5).  

 (a) boundary position         (b) local maxima  

on a scale-space i         of intensity changes j

Figure 2. Boundary of Gaussian scale-space  

 (a) texture image            (b) filtered image  

which has 5 regions     into a coarse resolution 

   (c) boundary image       (d) boundary image 

of a coarse resolution      of a fine resolution 

Figure 3. Morphological course-to-fine 

hierarchy of a texture image 
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A large prediction error in a certain direction implies 

higher possibility to identify local maxima of intensity 

changes by analyzing the total certainties over half 

circles as 

/ 2

/2

arg max [ ( ), ]P r dG                  (6) 

Figure 2 illustrates the method to detect the boundary 

of Gaussian scale-space. In Figure 2-(a), the optimal 

position of a boundary i  of a scale is estimated to 

minimize errors by the highest possibility, thus i  is 

located at the maxima of intensity changes j . Since 

the maximum of change directly implies the position 

of discontinuity, i  is exactly located at the position of 

discontinuity on the scale as Figure 2-(b) illustrates. 

The smoothness condition of Gaussian scale-space can 

be efficiently used to accommodate an object with 

several piecewise smooth edges, i.e. a texture object. 

On a coarse resolution, the piecewise edges can be 

smoothly removed and an object is determined as an 

arbitrarily shaped region of a coarse resolution. 

Therefore, Gaussian scale-space represents a coarse-

to-fine morphological hierarchy of ROI (region of 

interest) which has the shape trajectory of 

discontinuity. Figure 3 exemplifies the morphological 

course-to-fine hierarchy.  

In the shape trajectory, coarse but trustworthy dense 

disparity vectors are iteratively estimated using the 

concept of a hybrid area-based approach which was 

described in Section 1. Subsequently, the coarse 

disparity vector field is iteratively updated into a fine 

disparity vector field. Iterating into local minima can 

be efficiently avoided using this method. A hybrid 

area-based approach which uses both edges and 

regions is implemented with a matching energy 

function which uses a squared difference. For 

illustration purpose, the energy function will be 

separately formulated with two energy functions which 

are respectively laid on the boundary domain  and 

region domain .

In a first step, trustworthy global disparity vectors on 

the boundary domain  are horizontally and vertically 

estimated following the pixels at boundary position as 

2

(D) ( , ) D ( , ),rl l rE I x y I x x y y dxdy   (7) 

D ( , )l r x y  is the range of global disparity vectors and  

( )I x

i

P

j

( , , )P x y ( , , )P x y

Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05) 

1550-6185/05 $20.00 © 2005 IEEE 



the subscripts denote the matching direction, e.g. 

l r  for left-to-right direction.  

When a region enclosed in the boundary is initialized 

with the range of the global disparity vectors using the 

boundary constraint, dense disparity vectors are locally 

and iteratively estimated by the detail adjustment. This 

method offers a more accurate local disparity 

estimation solution to restrict error. Moreover, it can 

be used to smooth a homogeneous region in a disparity 

field. We note that a homogeneous region generally 

has similar disparities because the physical world is 

cohesive. The adjustment is described as an error 

minimization procedure, which is coupled with 

anisotropic disparity-field diffusion in the next section.  

2.2. Dense disparity estimation with anisotropic 

disparity-field diffusion 

Although the minimization of matching errors is a 

common solution in the stereo correspondence 

problem, it does not always guarantee the 

homogeneous proposition. Traditional solutions 

frequently consider an additional smoothing term for 

regularization. However, smoothing over disparity 

boundaries often causes conspicuous blurring errors. 

In this paper, we regularize a disparity vector field by 

an edge-preserving anisotropic diffusion term. As we 

will show, this yields excellent results without 

smoothing the important boundaries. We propose to 

adjust the disparity vector field via PDE in an energy-

minimization framework with a regularization term as 

2

,

( )

[ ( , ) ( ( ) D( , ), )]

[ ( , ), ( , )]

rl l r

l l r

E d

I x y I x d x x y y dxdy

x y d x y dxdyG

 (8) 

where  is the region domain and D  is the constraint 

of a global disparity range on the boundary domain 

in Eq. (7) . Dense disparity vectors l rd  are 

estimated in the global disparity range D .  is a 

Lagrange multiplier and ( ) is a modified version 

for disparity of the discrete Perona and Malik model 

[26], which has a form as ( ) 'G in the flux function 

as 

, ,[ ( , ), ( , )] ( )l l r l l rx y d x y dxdy G dG G  (9) 

( )G  is an anisotropic diffusion function which (is 

called “edge-stopping function”) – used to modify the 

diffusion coefficient at edges and to derive 

discontinuity. A suitable choice of G  is 

2 2( / )( ) KG s e                       (10) 

for a positive constant K  that controls the level of 

contrast of edges to affect the smoothing process. 

Figure 4 depicts the anisotropic diffusion 

functions ( ) and ( )G . The value of each function 

is reduced when the absolute value of the gradient 

magnitude increases beyond a fixed point determined 

by the scale parameter. This modified flux function 

( ) ( ) 'G  calculates the divergence between the 

gradient of disparity field and the gradient of filtered 

image. This function suppresses the diffusion at the 

important discontinuity boundary which has large 

gradients for both the disparity field (e.g. left-to-right 

disparity) and the Gaussian filtered base-image (e.g. 

left image). As mentioned in section 1, anisotropic 

diffusion methods employing Gaussian-filter kernels 

solve the ill-posed true backward diffusion in areas of 

large gradients, e.g. shadow and texture region, etc. 

[18, 19].  Similarly, disparity field diffusion depends 

on the image gradient. Thus, a large image gradient 

on a homogeneous area converges into the local 

minima. The proposed method solves the local 

minima problem by the gradient evaluation based on 

the Gaussian pre-filtered base-image. The left-to-right 

disparity field is diffusively regularized by evaluation 

of the gradient based on the Gaussian filtered base-

image of Eq. (11). The right-to-left disparity field is 

vice-versa.   

2 2 2( ) /(2 )2 1

, ( , ) * ( , )

(2 ) * ( , )l lx y

l l

l

x y I x y

e I x y

G G
   (11) 

Figure 4. Anisotropic diffusion function  
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As shown in section 2.1, a shape trajectory with a 

local region is determined towards it’s closest image 

boundaries to minimize prediction errors. The 

disparity vector field inside the local region is 

diffusively regularized to all its neighbors toward the 

propagation direction. Diffusion is a process that 

equilibrates spatial variations with concentration. We 

iteratively solve the minimization problem of Eq. (8) 

using the Euler-Langrange equation and the 

asymptotic analysis of the parabolic PDE [11, 12, 13] 

with natural boundary conditions in Eq. (12).

(12)

When a scale of successively smoothed, the features 

are obtained from Eq. (9), the solution of this 

parabolic problem coincides with the filtering of the 

initial disparity field in Eq. (12). Since we have 

described the regularization term using nonlinear PDE 

on a disparity field, the next step is to discretize the 

parabolic equation of the PDE in space and time by 

finite differences. In this paper, an inhomogeneous 

time diffusion process with discrete sampling solves 

the problem as  

(13)

In the inhomogeneous time diffusion of Eq. (13), 

different pixels diffuse at a different time scale related 

to the pixel confidence.  High confidence pixels 

diffuse much slower than low confidence pixels [11]. 

To increase the time step 
x
 on the scale-space, the 

disparity field is successfully smoothed and coarsened. 

Simultaneously, boundaries are enhanced if one 

chooses a nonlinear edge-stopping function ( )G

which suppresses diffusion in area of high gradients 

from scale-space. A lot of spatially varying diffusion 

functions to control the rate at which diffusion occurs 

near the edges have been proposed and evaluated [27]. 

Eq. (10) achieved sufficient and reliable results for our 

purpose.  

The regularization term includes two steps: the 

gradient and the divergence. Numerically, we do not 

use central difference approximation for the gradient 

and the divergence, because this would result in an 

unconditionally unstable scheme. We instead employ 

forward differences for gradient and backward 

differences for the divergence in Eq. (14) and (15). 

( ) ( )( , ) ( , )
( , ), ( , )x y

I x y I x y
I x y I x y

x y
 (14) 

( ) ( )G ' G ' G 'x ydiv     (15) 

( )  and ( ) respectively denote the forward direction 

and the backward direction of the gradient operator. In 

the two dimensional case, the gradient operator yield a 

2 2 matrix, and the divergence operator collapses 

this into a 2 1 vector. While the edge stopping 

function ( )G  is calculated, the nonlinear disparity 

diffusion requires the computation of flux function 

( ) ( ) 'G  in x  and y directions. The columns 

of the flux matrix are computed independently and the 

backward differences of the flux matrix are used to 

compute the divergence operation. Finally we obtain 

the numerical form of Eq. (13) in Eq (16). 

 (16)

3. Simulation results 

3.1. Performance under natural image 

conditions 

Future 3D object-based vision systems for multimedia 

and tele-immersion should be robust for indoor and 

outdoor environments. It is important to evaluate 

algorithms considering these environments, i.e. for 

unbalanced camera condition, photometric lighting 

conditions like mutual reflection, shadow, noise, 

image complexity. We performed evaluation based on 

natural stereo image pairs from an outdoor scene and 

an indoor scene in Figure 5.  A “Balloon” color stereo 

image pair with size of 720 480 pels and 24bits/pel is 

used because it contains difficult lighting conditions 

with imbalance between left and right images (i.e. left 

image is darker than right image). Several objects 
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have different disparities. The “Buggy” stereo image 

pair of same size and color resolution has more stable 

lighting conditions between left camera and right 

camera. However, it has non-texture areas which have 

similar color and intensity values in the foreground 

and the background. The non-texture areas easily 

cause ambiguous matching problems.  

The proposed algorithm yields excellent dense 

disparity maps as shown in Figure 6. The left image is 

the left-to-right disparity map. Brighter values 

represent large disparity vectors. The right image is 

the right-to-left disparity map. 

 (a) Balloons 

 (b) Buggy 

Figure 5. Simulation datasets 

 (a) Balloons 

 (b) Buggy 

Figure 6. Simulation results 

While iteration is used to solve the PDE, the dense 

disparity field is estimated and regularized with 

anisotropic diffusion. In the nonlinear regularization 

term, an edge-stopping flux function which uses a 

combination between the gradient of a Gaussian scale-

space and the gradient of a disparity field provides an 

excellent localization performance of discontinuity 

and homogeneous condition. In the coarse-to-fine 

hierarchy, the occlusions of final fine depth fields are 

diffusively filled using coarse disparity fields. This is 

an attractive, fully-automatic approach since the 

method generates a natural complete disparity without 

an additional occlusion hole filling step. Thus our 

algorithm avoids usual post-processing to synthesize 

non-information region of occlusion using 

interpolation, extrapolation and mirroring.

3.2. Performance comparison 

Although the proposed algorithm results shown in 

Figure 6 suggest a good performance, comparison of 

large-baseline scenes between the proposed algorithm 

and some traditional algorithms are important. Large-

baseline dense disparity estimation is a challenging 

task, since it is usually difficult to obtain good 

correspondences across images. If the baseline is large, 

epipolar geometry must be calculated before disparity 

matching. 

Large-baseline stereo sequence data sets, “Teddy” and 

“Kate” in Figure 7 are used for the evaluation. The 

size of “Teddy” is 450 375 pels and the size of “Kate” 

is 320 240 pels. Sequence “Teddy” is based on 

parallel camera geometry while sequence “Kate” is 

taken from toed-in cameras. The baseline is very large 

and the image is not rectified. Figure 8 depicts the 

results of various of traditional methods and the 

proposed algorithm.  

“SSD” is a pixel-based matching algorithm using a 

sliding window to calculate as error criteria the sum of 

squared differences. SSD produces large error as 

shown in Figure 8-(a). A fixed window increases the 

likelihood of mismatch per pixel. Moreover, very large 

baseline causes serious matching errors as seen in the 

“Kate” image. “Graph-cut” requires heavy 

computation but is the approach is well-known as 

most reliable global optimization algorithm. Graph-

cut handles links-and-cuts of multiple possible values 

by repeatedly minimizing an energy function 

involving only binary variables. The algorithm 

provides stable result for very large baseline, but 

problems appear with high disparity values as shown 

in Figure 8-(b). On the contrary, the proposed method 
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in Figure 8-(c) represents the most reliable and 

detailed disparity maps. The performance comparison 

proves the excellent performance of the proposed 

algorithm.  

(a) Teddy 

 (b) Kate 

Figure 7. Large-baseline datasets 

(a) SSD 

 (b) Graph-cut 

 (c) Proposed algorithm 

Figure 8. Performance comparison  

4. Conclusions 

In this paper we proposed a new, reliable dense stereo 

correspondence method which is called Gaussian 

scale-space dense disparity estimation with anisotropic 

disparity diffusion.  

We described the algorithm with two steps: (1) 

Gaussian scale-space disparity initialization and (2) 

Dense disparity estimation with anisotropic disparity-

field diffusion. The algorithm establishes the 

progressive combination between dense disparity 

estimation and a regularization method using the 

anisotropic diffusion on a multi-scale hierarchy 

generated by Gaussian-filter kernel. The multi-scale 

approach provides the best trade-off between the 

detection and localization performance. Moreover, 

pre-filtered processing solves convergence into local 

minima in areas of large gradients in PDE. Therefore, 

our algorithm brings about the excellent localization 

characteristics of a dense disparity field by only tuning 

few parameters. We evaluate the performance using an 

outdoor scene and an indoor scene and achieved 

excellent results. A comparison with traditional 

algorithms proves the excellent performance on the 

large-baseline as well. 
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