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Abstract

With the increasing number of image communication ap-
plications especially in the low complexity domain, error
concealment has become a very important field of research.
Since many compression standards for images and videos
are block-based a lot of methods were applied to conceal
block losses in monocular images. The fast progress of
capture, representation and display technologies for 3D im-
age data advances the efforts on 3D concealment strategies.
Because of their psycho-visual characteristics, stereoscopic
images have to fulfill a very high quality demand. We pro-
pose an algorithm that makes use of the redundancies be-
tween two views of a stereo image pair. In many cases erro-
neous block bursts occur and can be highly disturbing, thus
we will mainly concentrate on these errors. In addition,
we focused on the quality assessment of several error con-
cealment strategies. Beside the objective evaluation mea-
sures, we carried out a subjective quality test following the
DSCQS methodology as proposed by MPEG. The results of
this test demonstrate the efficiency of our approach.

1. Introduction

For transmission of stereoscopic images over band re-
stricted channels monoscopic source coders are often used,
i.e. both views of a stereo image pair are coded indepen-
dently. Hence redundancies between the two images are
not eliminated and can be utilized for error concealment in
the decoding process.

In many international standards block-based transform
together with variable length coding is applied for source
coding (e.g. [7]). Due to variable length coding, a single bit
error can cause synchronization loss between the en- and
decoder which leads to burst errors until the next synchro-
nization mark.

The perception of depth is highly affected by lost blocks
in one channel. While in a monoscopic scenario interpola-
tion techniques yield satisfactory error concealment results,
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Figure 1. Flowchart of the proposed algorithm

they are not sufficient for stereoscopic image pairs [5], since
the information of depth is not preserved. We will show
in a subjective evaluation procedure that even small image
degradations in one view tend to result in noticeable percep-
tional disruptions. To our knowledge, only a little work in
the field of error concealment for stereoscopic images has
been published [1].

In our approach we handle every macro-block of an er-



ror burst separately. Thus, the applied algorithms are intro-
duced for the simple case of single block loss and enhance-
ments, if needed, are discussed. The proposed method lo-
cates the corresponding block in the undisturbed image and
aligns it to the different perspective of the damaged image.
Fig. 1 shows the flowchart of our algorithm.

Without loss of generality we assume a block loss in the
left image of a stereo image pair (fig. 2). The alignment
is realized by a projective transformation T [9], which is
represented by the vector of transformation parameters k:

(xr, yr) = T (k; (xl, yl))

k = [a1, a2, a3, b1, b2, b3, c1, c2]
T

xr =
a1xl + a2yl + a3

c1xl + c2yl + 1
(1)

yr =
b1xl + b2yl + b3

c1xl + c2yl + 1

First, corresponding pixel pairs (matches) around the er-
roneous region are identified using feature matching and the
principles of epipolar geometry (section 2). To reduce the
negative effect of outliers, i.e. matches which are badly
localized or even false, we use a robust estimation to set
an initial guess of the projective transformation parame-
ters (section 3). We will show the advantages of the ran-
dom sample consensus (RANSAC) versus the M-estimation
technique.

Depending on the texture of the lost block, a single pixel
shift can have a significant effect on the visual perception.
Therefore the transformation parameters k are optimized
with respect to the surrounding pixels of the lost block by
the Newton Method, which is described in section 4. In case
of depth discontinuities even the optimized projective trans-
formation can cause distortions which could negatively in-
fluence the stereoscopic depth perception. A block smooth-
ing could lessen this effect. We refer to this method in sec-
tion 5. In section 6 objective simulation results and the
subjective evaluation results of a psycho-visual test using
the Double Stimulus Continuous Quality Scale (DSCQS)
method are presented. Section 7 concludes the paper.

2. Feature Extraction/Matching

2.1. Feature Point Detection

Prior to the matching algorithm some so called feature
points surrounding the lost block have to be determined.
These points are selected by the Harris corner detector [3],
which is based on gradient measurement. Additionally, the
distance to the lost block and the number of feature points
within a certain range to each other are taken into account,
to select the most desirable feature points.

2.2. Feature Matching

Matching feature points in different images is probably
the most difficult problem. To find the appropriate corre-
spondences of the feature points in the right image, we uti-
lize the epipolar geometry between both views. The search
range can be reduced from the 2D image plane to a line, the
so called epipolar line. Knowing the fundamental matrix
F, i.e. the algebraic representation of the epipolar geome-
try [4], the projective mapping from points to lines is given
by the following equation:

lir = Fxi
l i = 1 . . . n (2)

F is the fundamental matrix and lir is the epipolar line in
the right image corresponding to the feature point xi

l in the
erroneous left image. As matching score the normalized
cross correlation is used. Figure 2 demonstrates the match-
ing of feature points surrounding a lost block. To reduce the
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Figure 2. Corresponding blocks in stereo im-
ages

probability of mismatches, we back-project the correspond-
ing feature points from the right image to epipolar lines in
the erroneous left image with the inverse fundamental ma-
trix. The Euclidean distance between the feature points and
the epipolar lines of the correspondences is a measure of
goodness. For further computations we use only the best
matches, i.e. matches with small distances to their epipolar
lines and with a correlation score higher than a predefined
threshold.

3. Robust Initialization of Transformation Pa-
rameters

This section describes the initialization phase for the es-
timation of the transformation parameters. Though eight
parameters have to be estimated for a projective transforma-
tion model, only four correspondences with a total of eight
equations would be sufficient, since none of the matches is



a mismatch. Thus, we increase the number of matches for
further computations. To reduce the effects of outliers, sev-
eral robust optimization methods are discussed in the litera-
ture (e.g. [2]). We compare the M-estimator and the random
sampling consensus (RANSAC) concerning the robustness
and quality of estimating good initial values of the transfor-
mation parameters. Section 6 will show some results.

3.1. M-Estimation

The M-estimator is a robust regression method to reduce
the effects of outliers by minimizing the following error
function:

min
k

∑

i

ρ(ri), (3)

where ri is the residual of the ith datum, i.e. the Euclidian
distance of the observation and its fitted location and ρ is
the Tuckey function:

ρ(ri) =







(cσ)2

6

(

1 −
[

1 −
(

ri

cσ

)2
]3

)

if |ri| ≤ cσ

(cσ)2

6 otherwise,
(4)

σ is the estimated standard deviation defined as

σ = 1, 4826 [1 + 5/(Q − P )] median |ri| (5)

and c is a tuning constant. A test series yields best results
using c ≈ 5. Q is the number of equations obtained from
the matches. To minimize (3) the derivative Ψ(x) = dρ(x)

dx

has to be used. Ψ(x) is also called the influence function.
The M-estimator of k is a solution of P=8 equations

∑

i

w(ri) ri

∂ri

∂kj

for j = 1 . . . P, (6)

where w(x) = Ψ(x)
x

is a weight function:

w(ri) =

{

[

1 −
(

ri

cσ

)2
]2

if |ri| ≤ cσ

0 otherwise,
(7)

Because w(ri) is a non-linear function, iterative numerical
methods have to be used to solve (7).

3.2. RANSAC

In this subsection we outline the random sampling con-
sensus (RANSAC), which is essentially a Monte Carlo type
approximation algorithm. The basic approach of this op-
timization method is quite different to the M-estimator.
Rather than using all of the matches (inliers and weaker
weighted outliers), RANSAC uses only a set of sub-samples

to find the approximately optimal solution with high prob-
ability. To calculate the transformation parameters, each
sub-sample consists of four feature matches. The sufficient
number of sub-samples can be determined with the follow-
ing equation:

Nsub =
log(1 − p)

log(1 − (1 − ε)4)
, (8)

where p is the probability to get at least one sub-sample
which consists of only good correspondences, and ε is the
assumed percentage of outliers. One major benefit of the
RANSAC algorithm is the ability to cope with a large pro-
portion of outliers.

As a criterion for the goodness of the transformation pa-
rameters we define the sum of squared residues:

R(k) =
∑

(xl,xr)∈b

[(Ir(xr, yr) − Il(xl, yl)) · w]2
!
= min.

(9)
(xl, yl) are the positions of the pixels within the boundary
region b in the left image and (xr, yr) are the corresponding
positions in the right image according to (1). w is a weight-
ing coefficient. The probability of discontinuities in depth
arises with the distance to the erroneous block. Therefore,
to minimize the influence of this squared residues, w de-
creases with the distance. The transformation parameters k

which yield the best results, i.e. the minimum of (9), are
taken as initial values for the Newton method.

4. Newton Method

In this section we describe the optimization of the trans-
formation parameters k. We minimize a cost function C(k)
which depicts the sum of quadratic errors between bound-
ary pixels placed around the lost block in the left image Il

and its corresponding pixels in the right image Ir with re-
spect to k. Boundary pixels indicate a L pixel wide region
around the block. In case of error bursts, only undisturbed
regions are used. The cost function is represented by

C(k) =
1

2

∑

(xl,xr)∈b

[Ir(xr, yr) − Il(xl, yl)]
2. (10)

Assuming the boundary region contains M pixels we can
build two vectors pbl ∈ R

M and pbr ∈ R
M . Eq. (10)

becomes

C(k) =
1

2
(pbr(k) − pbl)

T · (pbr(k) − pbl). (11)

The optimum for k results from the global minimum of
C(k):

kopt = arg min
k

C(k) (12)



For local minima gradk(C(k)) is a zero vector. In this ap-
proach we determine the null of the gradient using the New-
ton method for multidimensional functions [9]. The itera-
tive rule for updating the transformation parameter vector k

is:

k(n+1) = k(n)−H−1
k (C(k)) ·gradk(C(k))

k(n)
(13)

H−1
k (C(k)) marks the Hessian of the cost C with respect

to k. The entries H
ij
k of this symmetric matrix in the ith

row and the jth column are:

H
ij
k (C(k)) =

[

∂2pbl

∂ki ∂kj

]T

(pbr(k) − pbl)

+

[

∂pbr(k)

∂ki

]T
∂pbr(k)

∂kj

(14)

The first addend in (14) is a weighted sum of pixel differ-
ences. Since the difference has zero mean, from a minimum
number of entries in the border vector pbr this term can be
disregarded [9].

The derivatives of vector pbr in the second addend of
(14) are defined as:

∂pm
br

∂ki

=
dI(xr, yr)

dxr

∂xr

∂ki

+
dI(xr, yr)

dyr

∂yr

∂ki
(xm

br
,ym

br
)

(15)

pm
br is the mth entry of vector pbr(k) and (xm

br, y
m
br) de-

picts the corresponding pixel position in the right image
(m = 1, . . . , M ). The spatial derivations of image Ir are
computed by a combination of lowpass and derivation filter
as introduced by Simoncelli [8]. The filter coefficients are
illustrated in table 1.

Table 1. Filter coefficients for spatial deriva-
tions [8]

Filter Lowpass Derivation
h(−2) 0.004504187 −0.108144
h(−1) 0.243908 −0.269869
h (0) 0.4221 0.0
h (1) 0.243908 0.269869
h (2) 0.004504187 0.108144

As an initial guess k(0) for the Newton rule we use
the result obtained from the robust estimation using the
RANSAC-algorithm. Since the Newton gradient method
only reaches local minima we need to have a special focus
on this initial parameter set. Figure 3 displays the normal-
ized cost function for a lost 16 × 16 block over the hor-
izontal and vertical translation parameter. Since the cost
C(k) depends on 8 variables we reduced the parameter
space for better visualization. Even a deviation of 5 pix-
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Figure 3. Normalized cost function with re-
spect to horizontal and vertical deviation

els in the initial guess leads to a wrong final solution. Thus,
the RANSAC-algorithm described in section 3 is of prime
importance.

5. 3D Block Smoothing

Since the projective transformation T only represents an
approximation of a real 3D space model, misalignments be-
tween the warped block region B̂l and its surrounding pixels
can occur. Discontinuities in depth are a reliable indication.
If the disparities of the matches vary above a given thresh-
old, we apply a smoothing strategy which is closely related
to the one introduced by Wang et al. [10] for monoscopic
error concealment. Figure 4 shows a scheme for combining
boundary pixels of the lost block and the information re-
trieved from the corresponding picture to generate a smooth
block transition. In [1] we introduced this technique as 3D
block smoothing and refer this as 3D-BS.
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Figure 4. Estimation of lost samples

In Figure 4 Bl represents the lost block of samples
(m, n) with values fm,n in the left image. The estimated
value of a sample in the lost block is denoted as f̂m,n. Pixel



values of the aligned block obtained from the corresponding
view are denoted as f stereo

m,n . We minimize the inter sample
variation between neighboring samples within the block Bl

and between corresponding samples of Bl and Bstereo. The
smoothness measure is defined as

Ψ(f̂m,n) =
1

2

∑

(m,n)∈Bl

[

wn
m,n

(

f̂m,n − f̂m−1,n

)2

+we
m,n

(

f̂m,n − f̂m,n+1

)2

+ws
m,n

(

f̂m,n − f̂m+1,n

)2

+ww
m,n

(

f̂m,n − f̂m,n−1

)2

+wstereo
m,n

(

f̂m,n − fstereo
m,n

)2
]

. (16)

Eq. (16) involves samples surrounding the lost block,
which will be referred as boundary pixels b. Pixels from
the analogous block can also be considered as boundary
pixels into a third dimension (Figure 4). The superscripts
indicate the direction (north, east, south, west and stereo).
The weighting coefficients wn

m,n, we
m,n, ws

m,n, ww
m,n and

wstereo
m,n determine the importance of smoothness between

a pixel value f̂m,n and its direct neighbors. Using matrix
notation, eq. (16) can be written as

Ψext(̂f) =
1

2

(

‖Sn f̂ − bn‖
2 + ‖Sef̂ − be‖

2+

+ ‖Ssf̂ − bs‖
2 + ‖Sw f̂ − bw‖

2 +

+ ‖Sstereof̂ − bstereo‖
2
)

. (17)

The matrices Sn, Se, Ss, Sw and Sstereo are composed
of the weighting coefficients w of eq. (16). Note that
the matrices Si are sparse and of size N 2 × N2 (N de-
fines the block size) while the border vectors are of size
N2 × 1. bstereo contains N2 nonzero values compared to
N nonzero values of the other boundary vectors.

The optimal estimation of f̂opt can be derived using

∂Ψ

∂ f̂opt

= 0, (18)

which yields
f̂opt = S−1b. (19)

Matrix S and vector b are composed as follows:

S = ST
nSn + ST

e Se + ST
s Ss + ST

stereoSstereo

b = ST
nbn + ST

e be + ST
s bs + ST

stereobstereo

Depending on the distance to the relevant border, we
choose decreasing weighting coefficients within Sn,e,s,w,
while keeping a constant weight within Sstereo. The ratio
wn,e,s,w

m,n /wstereo
m,n for every sample (m, n) defines whether

f̂m,n adapts to the borders in direction north, east, south and
west or it adapts to border stereo.

6. Simulation Results

In this section objective and subjective tests are carried
out. As an objective quality factor we choose the PSNR
of a concealed burst. A psycho-visual test shows the sub-
jective impact of different concealment strategies on test
persons. We use the Double Stimulus Continuous Qual-
ity Scale Method (DSCQS) [6] described in subsection 6.2.
Three example image pairs are taken. Example ”Hall” and
example ”Castle” are shown in figure 5 and figure 8. Ex-
ample ”Tower” is similar with higher luminance difference
between left and right view.

6.1. Objective Simulation Results

The simulation results of the robust optimization meth-
ods for the initialization phase (M-estimator vs. RANSAC)
are presented in table 2. The PSNR of the reconstructed
block is averaged over 5955 burst errors of 3 consecutively
lost 16 × 16 blocks (”Castle”) and 7600 burst errors of the
same size (”Hall”). The RANSAC method yields signifi-

Table 2. Average PSNR: M-estimator vs.
RANSAC

PSNR in dB Hall Castle
M-estimator 23.79 19.06
RANSAC 32.53 20.02

cantly better results than the M-estimator, especially for ex-
ample ”Hall”. Furthermore, the transformation failed eight
times using the M-estimator, because pixels from outside
the image were warped into the erroneous burst.

In the second simulation processes we compare four
different error concealment techniques: a monoscopic er-
ror concealment technique proposed in [10], the Newton
method described in section 4 where the burst is handled
once as a whole (NEWTburst) and block by block (NEWT),
and the Newton method (NEWT) combined with the 3D-BS
described in section 5. Again the PSNR is used as qual-
ity factor. 130 burst errors of 8 consecutively lost 16 × 16
blocks (”Castle”) and 169 burst errors of the same size
(”Hall”) are taken into account. The simulation results of
the concealment methods are presented in table 3.

Table 3. Average PSNR in dB for arbitrary
burst losses

mono NEWTburst NEWT 3D-BS
Hall 22.10 27.74 29.44 30.78
Castle 18.06 20.79 21.41 22.46

The table shows that the combination of the Newton
method and the 3D-BS outperforms the other error conceal-



ment strategies. As expected the monoscopic method yields
by far the worst results. Due to the relative small bursts of
8 consecutively lost 16× 16 blocks, the Newton method for
bursts as a whole even results in a high PSNR, though it is
2 to 3 dB less than the PSNR of the combined Newton and
3D-BS method.

As mentioned in section 5 the 3D-BS is processed
only if the disparity variation of the four selected matches
(RANSAC) is higher than a predefined threshold. In ex-
ample ”Hall” the execution rate was only 4.51%. Due to
larger discontinuities in depth, the execution rate of 3D-BS
for example ”Castle” was 17.69%.

Figures 5-7 show the concealment results of image pair
”Hall” and illustrate the visual impact of the error con-
cealment strategies. The block-PSNR values are 25.41dB
(monoscopic), 33.83dB (NEWTburst), 38.42dB (NEWT)
and 38.42dB (3D-BS) for the upper error burst and 17.71dB
(monoscopic), 18.67dB (NEWTburst), 27.66dB (NEWT)
and 27.66dB (3D-BS) for the lower error burst. For these
examples no adaptive block smoothing process did occur,
so we obtain the same PSNR value for methods NEWT and
3D-BS.

Figures 8-10 show the concealment results of image pair
”Castle”. The block-PSNR values are 16.87dB (mono-
scopic), 20.89dB (NEWTburst), 25.01dB (NEWT) and
24.99dB (3D-BS) for the upper error burst and 16.94dB
(monoscopic), 16.86dB (NEWTburst), 19.57dB (NEWT)
and 19.75dB (3D-BS) for the lower error burst.

6.2. Subjective Stimulation Results

To strengthen the simulation results from section 6.1, a
psycho-visual test (DSCQS) with fifteen test subjects was
carried out. Active liquid crystal shutter glasses were used
to perceive the stereoscopic depth. The subjects were pre-
sented with a series of pairs of stereoscopic images. Each
concealed image pair was related twice successively to its
error free version (reference). The time slot for each stereo-
scopic image was 8 seconds and the time between two im-
ages was 2 seconds. The persons recorded their assessment
of the quality of both images (reference and test) on two
continuous graphical scales for each test period. A measure-
ment of length makes the subjective score available, which
is within a range of 0 to 10.

In our test condition each stereoscopic image pair had
three varying error bursts of the following sizes:

• 18 consecutively lost 16 × 16 blocks

• 12 consecutively lost 16 × 16 blocks

• 8 consecutively lost 16 × 16 blocks

Figure 5. Erroneous left image ("Hall")

Figure 6. Close-up: original (top), mono con-
cealment (2nd), NEWTburst (3rd), NEWT (4th),
3D-BS (bottom)

Figure 7. Close-up: original block (top), mono
concealment (2nd), NEWTburst (3rd), NEWT
(4th), 3D-BS algorithm (bottom)



Figure 8. Erroneous left image ("Castle")

Figure 9. Close-up: original block (top), mono
concealment (2nd), NEWTburst (3rd), NEWT
(4th), 3D-BS algorithm (bottom)

Figure 10. Close-up: original block (top),
mono concealment (2nd), NEWTburst (3rd),
NEWT (4th), 3D-BS algorithm (bottom)

The evaluation results, i.e. the mean opinion scores
(MOS), the difference mean opinion scores (DMOS) and
its standard deviation (S.D.), are presented in table 4.

Table 4. Mean opinion scores
MOS [test (ref.)] DMOS (S.D.)

Hall:
Monoscopic 2.30 (7.96) 5.66 (1.03)
NEWTburst 3.67 (8.04) 4.37 (1.85)
NEWT 7.86 (7.84) -0.02 (0.64)
3D-BS 7.84 (8.05) 0.21 (0.50)
Castle:
Monoscopic 2.62 (8.12) 5.50 (1.37)
NEWTburst 4.48 (8.22) 3.74 (2.31)
NEWT 6.58 (8.04) 1.46 (1.75)
3D-BS 6.56 (7.99) 1.43 (1.83)
Tower:
Monoscopic 2.78 (7.26) 4.48 (1.29)
NEWTburst 5.09 (7.65) 2.56 (2.16)
NEWT 5.43 (7.61) 2.18 (1.76)
3D-BS 5.38 (7.27) 1.89 (1.32)
overall:
Monoscopic 2.52 (7.88) 5.36 (1.29)
NEWTburst 4.28 (8.03) 3.75 (2.18)
NEWT 6.86 (7.87) 1.01 (1.65)
3D-BS 6.83 (7.87) 1.04 (1.49)

In figure 11 the diagram of the difference mean opinion
scores (DMOS) for all concealment strategies is displayed.
The psycho-visual test shows that our proposed approaches
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Figure 11. Psycho-visual test results

yield excellent concealment results. The combination of
the Newton method and 3D-BS does not result in a higher
DMOS than using only the Newton method, although the
PSNR was up to 1dB higher. In example ”Hall” most of
the test subjects could not make a difference between the
original and the concealed images using only the Newton
method (NEWT). Three test subjects even rated the quality



of the concealed images better than the original.

7. Summary and Conclusion

In this paper we have presented a new method for ro-
bust stereoscopic error concealment. Our main attention fo-
cused on the concealment of erroneous block bursts. Based
on the projective transformation model we applied Newtons
algorithm to improve reconstruction results of lost blocks
in stereoscopic images. If the transformation model di-
verges from the 3D structure we additionally applied a
block smoothing algorithm to increase the perceived im-
age quality. For the assessment of the proposed method a
subjective evaluation procedure was carried out. The main
conclusions from the test results are:

(1) The strategy of handling all blocks of consecutive
block losses separately outperforms the approach of han-
dling them as a whole using the subjective evaluation crite-
ria. Note that the objective block-PSNR measure does not
allow to make such a clear statement.

(2) Smoothing the aligned blocks from the correspond-
ing image towards the border pixels does not really improve
the subjective perception quality, although the PSNR mea-
sure increases slightly.

(3) In general the PSNR of a recovered erroneous block
burst serves as a good rough measure for the quality of per-
ception. Quantitative statements about the performance of
different concealment algorithms must be proofed by a sub-
jective quality scale evaluation.
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