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ABSTRACT
Error concealment is an important field of research in

image processing. Many methods were applied to conceal
block losses in monocular images. In this paper we present
a concealment strategy for block loss in stereoscopic im-
age pairs. Unlike the error concealment techniques used for
monocular images, the information of the associated image
is utilized , i.e., by means of a projective transformation
model, pixel values from the associated stereo image are
warped to their corresponding positions in the lost block.
The stereoscopic depth perception is much less affected in
our approach than using monoscopic error concealment tech-
niques.

1. INTRODUCTION

Common monoscopic source coders can be utilized for stereo-
scopic image pairs, when the two channels, i.e., left view
and right view of the scene, are handled independently. The
necessary synchronization of bitstreams can be achieved by
multiplexing the bitstream of the two monoscopic coders.
In this coding approach redundancies between the channels
are not utilized to gain a higher coding efficiency and can
therefore be used for error concealment.

In many international standards block-based transform
together with variable length coding is applied for source
coding (e.g. [1]). Due to variable length coding, a single bit
error can cause synchronization loss between the en- and
decoder which leads to burst errors until the next synchro-
nization mark. In this paper we assume loss of single and
consecutive blocks.

The perception of depth is highly affected by a lost block
in one channel. While in a monoscopic scenario interpola-
tion techniques yield satisfactory error concealment results,
they are not sufficient for stereoscopic image pairs, due to
their low pass character. To our knowledge, no specific er-
ror concealment strategies for stereoscopic images utilizing
the second channel have been proposed.

In our approach, the corresponding block is located in
the undisturbed image and aligned to the different perspec-
tive of the damaged image. Without loss of generality we

Fig. 1. Corresponding blocks in stereo images

assume a block loss in the left image of a stereo image pair
(fig. 1). The alignment is realized by a projective trans-
form [2].

First, the corresponding pixel pairs are identified using
the principles of epipolar geometry. In case of occlusion the
corresponding pixel can not be found (outliers). To reduce
the negative effect of outliers, all matches are weighted by
an M-estimator, prior the initial guess of the parameters of
the projective transform (section 2).

The projective transformation T is represented by the
vector of transformation parameters k:

(xr, yr) = T (k; (xl, yl))

k = [a1, a2, a3, b1, b2, b3, c1, c2]
T

xr =
a1xl + a2yl + a3

c1xl + c2yl + 1
(1)

yr =
b1xl + b2yl + b3

c1xl + c2yl + 1

Depending on the texture of the lost block, a single pixel
shift can have a significant effect on the psychovisual per-
ception. Therefore the transformation parameters k are op-
timized with respect to the surrounding pixels of the lost
block by the Adapted Newton Method, which is described
in section 3. In section 4 simulation results are presented
and discussed. Section 5 concludes the paper.



2. POINT CORRESPONDENCES

2.1. Feature Point Detection

Prior to the matching algorithm some so called feature points
surrounding the lost block have to be determined. These
points are selected by a Harris corner detector [3], which is
based on gradient measurement. Additionally, the distance
to the lost block and the number of feature points within a
certain range to each other are taken into account, to select
the most desirable feature points.

2.2. Correspondences

Matching feature points in different images is probably the
most difficult problem. To find the appropriate correspon-
dences of the feature points in the right image, we utilize the
epipolar geometry between both views. The search range
can be reduced from the 2D image plane to a line, the so
called epipolar line. Knowing the fundamental matrix F,
i.e. the algebraic representation of the epipolar geometry [4],
the projective mapping from points to lines is given by the
following equation:

lir = Fxi
l i = 1 . . . n (2)

F is the fundamental matrix and lir is the epipolar line in
the right image corresponding to the feature point xi

l in the
erroneous left image. As matching score the normalized
cross correlation is used. To reduce the probability of mis-
matches, we back-project the matches from the right image
to epipolar lines in the erroneous left image with the inverse
fundamental matrix. The Euclidean distance between the
feature points and the epipolar lines of the correspondences
is a measure of goodness. For further computations we take
only the best matches, i.e. matches with small distances to
their epipolar lines and with a correlation score higher than
a predefined threshold.

2.3. M-Estimation

The previous section described a robust method of finding
point correspondences in a stereo image pair. In this section
we estimate the eight parameters of the projective trans-
formation T from a sufficient number of point correspon-
dences. In our algorithm we use a M-estimator as a robust
regression method to reduce the effects of outliers by mini-
mizing the following error function:

min
k

∑

i

ρ(ri), (3)

where ri is the residual of the ith datum, i.e. the Euclid-
ian distance of the observation and its fitted location and ρ
is the Tuckey function [4]. To minimize (3) the derivative

Ψ(x) = dρ(x)
dx

has to be used. Ψ(x) is also called the influ-
ence function. The M-estimator of k is a solution of N=8
equations

∑

i

w(ri) ri

∂ri

∂kj

for j = 1 . . . N, (4)

where w(x) = Ψ(x)
x

is a weight function:

w(ri) =

{

[

1 −
(

ri

cσ

)2
]2

if |ri| ≤ cσ

0 otherwise,
(5)

σ is the estimated standard deviation defined as

σ = 1, 4826 [1 + 5/(M − N)] median |ri| (6)

and c is a tuning constant. A test series yields best results
using c ≈ 5. Because w(ri) is a non-linear function, itera-
tive numerical methods have to be used to solve (5).

3. ADAPTED NEWTON METHOD

In this section we describe the optimization of the transfor-
mation parameters k. This is done by minimizing a cost
function C(k) which depicts the sum of quadratic errors be-
tween boundary pixels placed around the lost block in the
left image Il and its corresponding pixels in the right im-
age Ir with respect to k. Boundary pixels indicate a L pixel
wide region around the block. The cost function is repre-
sented by

C(k) =
1

2

∑

(xl,xr)∈b

[Ir(xr, yr) − Il(xl, yl)]
2, (7)

where (xl, yl) are the positions of the pixels with in the
boundary region b in the left image and (xr, yr) are the
corresponding positions in the right image according to (1).
Assuming the boundary region contains M pixels we can
build two vectors pbl ∈ R

M and pbr ∈ R
M . Eqn. (7)

becomes

C(k) =
1

2
(pbr(k) − pbl)

T · (pbr(k) − pbl). (8)

The optimum for k results from the global minimum of
C(k):

kopt = arg min
k

C(k) (9)

For local minima gradk(C(k)) is a zero vector. In this ap-
proach we determine the null of the gradient using the New-
ton method for multidimensional functions [2]. The itera-
tive rule for updating the transformation parameter vector k

is:

k(n+1) = k(n)−H−1
k (C(k)) · gradk(C(k))

k(n)
(10)



H−1
k (C(k)) marks the Hessian of the cost C with respect

to k. The entries H
ij
k of this symmetric matrix in the ith

row and the jth column are:

H
ij
k (C(k)) =

[

∂2pbl

∂ki ∂kj

]T

(pbr(k) − pbl)

+

[

∂pbr(k)

∂ki

]T
∂pbr(k)

∂kj

(11)

The first addend in (11) is a weighted sum of pixel differ-
ences. Since the difference has zero mean, from a minimum
number of entries in the border vector pbr this term can be
disregarded [2].

The derivatives of vector pbr in the second addend of
(11) are defined as:

∂pm
br

∂ki

=
dI(xr, yr)

dxr

∂xr

∂ki

+
dI(xr, yr)

dyr

∂yr

∂ki
(xm

br
,ym

br
)

(12)

pm
br is the mth entry of vector pbr(k) and (xm

br, y
m
br) de-

picts the corresponding pixel position in the right image
(m = 1, . . . ,M ). The spatial derivations of image Ir are
computed by a combination of lowpass and derivation filter.

As an initial guess k(0) for the Newton rule we use the
result obtained from the robust M-estimation. Since the
Newton gradient algorithm only reaches local minima we
need to have a special focus on this initial parameter set.
Fig. 2 displays the normalized cost function for a lost 16×16
block over the horizontal and vertical translation parameter.
Since the cost C(k) depends on 8 variables we reduced the
parameter space for better visualization. Even a deviation
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Fig. 2. Normalized cost function with respect to horizontal
and vertical deviation in pixels

of 5 pixels in the initial guess leads to a wrong final solu-
tion. Therefore, the M-estimator described in section 2 is of
prime importance.

For greater robustness we analyzed the convergence of
the Newton method with respect to the border pixel size L.
The plots in fig. 3 illustrate the normalized cost function
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Fig. 3. Convergence of the Newton algorithm for a 16x16
block loss and different pixel border sizes L

C(k)/M over the iteration counter for different L. Due to
experiments we need a minimum border size about 10 to 15
pixel to reach the minimum at all. The larger the bound-
ary region the faster the algorithm converges. On the other
hand, for large L the cost function gets smoother and the
minimum can not be found exactly.

This leads to a new strategy for utilizing the Newton
method, decreasing successively the border pixel size L af-
ter every minimum search. We execute the complete algo-
rithm for decreasing L, where every solution k is used as
initial vector for the the following search. Experiments have
shown that this iterative approach outperforms the Newton
algorithm with a defined border pixel size.

4. SIMULATION RESULTS

To show the efficiency of our method, we take two example
stereo image pairs. Example ”Hall” is displayed in fig. 4.
Example ”Castle” is similar with larger discontinuities in
depth. First, we assume several arbitrary block losses in
the left images and reconstruct them with three different
techniques: a monoscopic error concealment technique pro-
posed in [5], the projective transformation model achieved
from the M-estimator described in section 2.3 and the Adapted
Newton Method described in section 3. For each recon-
structed block we calculated the PSNR. Results were shown
in table 1 for block sizes of 8 and 16 pixel.

Hall Castle
PSNR in dB size=8 size=16 size=8 size=16
Monoscopic 23.16 19.71 17.94 17.26
M-estimator 27.31 24.00 20.92 20.78
Newton 34.28 30.67 22.49 22.95

Table 1. Average block-PSNR for arbitrary block losses

It is obvious that the Adapted Newton Method provides
the best results based on PSNR measure. To strengthen
these results, a psychovisual evaluation with eight test sub-



Fig. 4. Different block errors (1.-3.) for image pair ”Hall” and restorations: a) original block, b) mono concealment,
c) M-estimation, d) Adapted Newton Method

jects showed, that the depth perception is much less affected
using the stereo concealment approach, even without the
Newton algorithm (i.e. only the M-estimation), than using
the monoscopic error concealment technique. Anyhow, the
Newton algorithm shows by far the best results, especially
when the lost block or block burst is in a plane.

In fig. 4 we show the advantages of our algorithm for
three different block errors of image pair ”Hall”. One major
benfit is that bursts of block losses are handled the same
way as single block losses. Thus, even for large bursts
significant gains on monoscopic concealment strategies are
achievable. The block-PSNR values are 22.86 dB (mono-
scopic) and 26.70 dB (Newton) for the first block burst;
21.72 dB (monoscopic) and 21.76 dB (Newton) for the sec-
ond block burst, and 18.44 dB (monoscopic) and 21.69 dB
(Newton) for the third single block. The reconstruction qual-
ity decreases with the presence of great discontinuities in
depth because of the 2D transformation constraint.

5. SUMMARY

In this paper we have presented a new approach for stereo-
scopic error concealment. Based on the projective trans-
formation model, we adapted Newton’s algorithm to im-
prove reconstruction results of lost blocks in stereoscopic
images. We have shown that the stereoscopic depth percep-
tion is much less affected applying our approach than using
a monoscopic error concealment technique.
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