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Audio Classification Based on MPEG-7 Spectral
Basis Representations
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Abstract—In this paper, we present an MPEG-7-based audio
classification and retrieval technique targeted for analysis of
film material. The technique consists of low-level descriptors
and high-level description schemes. For low-level descriptors,
low-dimensional features such as audio spectrum projection based
on audio spectrum basis descriptors is produced in order to find a
balanced tradeoff between reducing dimensionality and retaining
maximum information content. High-level description schemes are
used to describe the modeling of reduced-dimension features, the
procedure of audio classification, and retrieval. A classifier based
on continuous hidden Markov models is applied. The sound model
state path, which is selected according to the maximum-likelihood
model, is stored in an MPEG-7 sound database and used as an
index for query applications. Various experiments are presented
where the speaker- and sound-recognition rates are compared
for different feature extraction methods. Using independent
component analysis, we achieved better results than normalized
audio spectrum envelope and principal component analysis in a
speaker recognition system. In audio classification experiments,
audio sounds are classified into selected sound classes in real time
with an accuracy of 96%.

Index Terms—Audio spectrum basis (ASB), audio spectrum pro-
jection (ASP), hidden Markov models (HMMs), independent com-
ponent analysis (ICA), MPEG-7.

I. INTRODUCTION

AUDIO SIGNALS contain a great deal of information that
can be used for effective video indexing either alone or to-

gether with visual information, including environmental sounds,
background noises, foley, animal sounds, speech sounds, and
nonspeech utterances. For these reasons, audio classification
and retrieval is an important and challenging research topic. An
important step of audio classification is feature extraction. An
efficient representation should be able to capture sound proper-
ties that are the most significant for the task, robust under var-
ious environments and general enough to describe various sound
classes. Because the environmental sounds consist of multiple
noisy and textured components as well as higher order structural
components such as iterations and scatterings, they are gener-
ally much harder to characterize than speech and music sounds.
The mel-frequency cepstral coefficients (MFCC) approach [1],
which is widely used in automatic speech recognition, has been
proposed to extract audio features. The MFCCs are perceptually
motivated features based on the short-term Fourier transform
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(STFT). The power spectrum bins are grouped and smoothed
according to the perceptually motivated mel-frequency scaling.
Then the spectrum is segmented into a number of critical bands
by means of a filter bank that typically consists of overlapping
triangular filters. Finally, a discrete cosine transform (DCT) ap-
plied to the logarithm of the filter bank outputs results in vec-
tors of decorrelated MFCC features. Foote [2] proposes the use
of MFCC coefficients plus energy to construct a learning tree
vector quantizer. In the Muscle Fish system by Wold et al. [3],
statistical values including means, variances, and autocorrela-
tions of several time- and frequency-domain measurements are
used to represent various perceptual features such as loudness,
brightness, bandwidth, pitch, and harmonicity. Guo et al. [4]
computes a combination of two types of features: 1) percep-
tual features, composed of total power, subband powers, bright-
ness, bandwidth, and pitch and 2) MFCC vectors. These fea-
tures are applied to the AdaBoost [5] learning machine which
is compared with the support vector machine (SVM) technique
[6]–[8]. Recently, in [9] and [10], Casey described a general-
ized sound recognition framework in which decorrelated, di-
mension-reduced log-spectral features are used to train hidden
Markov models (HMMs) for various sounds such as speech,
explosions, laughter, and different instruments. His important
idea is to use basis functions consisting of decorrelated features
that contain the important information of a spectrum in order to
project it into a low-dimensional representation. To attain a good
performance in this framework, a balanced tradeoff between re-
ducing the dimensionality of data and retaining maximum in-
formation content must be performed, as too many dimensions
cause problems with classification while dimensionality reduc-
tion invariably introduces information loss. The MPEG-7 sound
recognition tools [10]–[12] according to his proposal use decor-
related spectral features based on independent component anal-
ysis (ICA) [13] basis functions with HMMs [14] in order to
apply uniformly to diverse source classification tasks with ac-
curate performance. The tools provide a unified interface for
automatic indexing of audio using trained sound class models
in a pattern recognition framework. Each classified audio piece
will be individually processed and indexed so as to be suitable
for efficient comparison and retrieval by the sound recognition
system.

In this paper, our purpose is to evaluate the efficiency of an
audio indexing and retrieval system based on audio spectrum
basis (ASB) and audio spectrum projection (ASP) of MPEG-7
audio descriptors.

The paper is structured as follows. The audio indexing and
retrieval system is described in Section II. Section III deals with
evaluation of the automatically classified audio signals with or
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Fig. 1. Structure of audio indexing and retrieval system.

without a hierarchical structure consisting of various classes.
Section IV presents conclusions and future directions.

II. AUDIO INDEXING AND RETRIEVAL SYSTEM

The structure of the audio indexing and retrieval system using
MPEG-7 basis projection descriptors is illustrated in Fig. 1.

The audio indexing module extracts audio information from
a database of sounds. An HMM and a basis function have been
previously trained for each predefined sound class. A classifi-
cation algorithm finds the most likely class for a given input
sound by presenting it to each of the HMMs (after projection on
the corresponding basis functions) and by using the Viterbi al-
gorithm. The HMM with the highest maximum-likelihood score
is selected as the representative class for the sound. The algo-
rithm also generates the optimal HMM state path for each model
given the input sound. The state path corresponding to the most
likely class is stored as an MPEG-7 descriptor in the sound in-
dexing database. It will be used as an index for further query
applications.

The audio retrieval is based on the results of the audio in-
dexing. For a given query sound, the extracted audio features
are used to run the sound classifier as described above. The re-
sulting state path corresponding to the most likely sound class is
then used in a matching module to determine the list of the most
similar sounds whose own state path descriptions are stored in
a precomputed sound indexing database.

A. Feature Extraction Using Basis Projection

The purpose of MPEG-7 feature extraction is to obtain from
the audio source a low-complex description of its content. A bal-
anced tradeoff between reducing the dimensionality of data and
retaining maximum information content must be achieved. For
these reasons, the MPEG-7 audio group has proposed a feature
extraction method based on the projection of a spectrum into a
low-dimensional representation using decorrelated basis func-
tions.

The feature extraction system using basis projection is de-
scribed in Fig. 2. It mainly consists of five functions: short-time
Fourier transform (STFT), audio spectrum envelope (ASE), nor-

Fig. 2. Block diagram of feature extraction using spectrum basis projection.

malized audio spectrum envelope (NASE), basis decomposi-
tion algorithm—such as singular value decomposition (SVD) or
ICA—and basis projection, obtained by multiplying the NASE
with a set of extracted basis functions.

For the basis decomposition step, we combined a basis di-
mension-reduction using a principal component analysis (PCA)
algorithm [15] with a basis information maximization by ICA.

First, the observed audio signal is divided into overlap-
ping frames by the application of a hamming window function
and analyzed using the STFT

(1)

where is the size of the STFT, is the fre-
quency bin index, is the time frame index, is an analysis
window of size , and is the hop size. By Parseval’s the-
orem (i.e., so that power is preserved), there is a further factor
of to equate the sum of the squared magnitudes of the STFT
coefficients as

(2)

where the window normalization factor is defined as

(3)
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To extract reduced-rank spectral features, the spectral coeffi-
cients are grouped in logarithmic subbands. Frequency
channels are logarithmically spaced in nonoverlapping 1/4-oc-
tave bands spanning between 62.5 Hz (“low edge”), and 8 kHz
(“high edge”). The output of the logarithmic frequency range
is the sum of the power spectrum in each logarithmic subband.
The spectrum according to a logarithmic frequency scale, which
the MPEG-7 standard refers to as ASE, consists of a coefficient
representing power between 0 Hz and “low edge,” a series of
coefficients representing power in logarithmically spaced bands
between “low edge” and “high edge,” and a coefficient repre-
senting power above “high edge.”

The resulting log-frequency power spectrum is converted to
the decibel scale

(4)

where is the logarithmic frequency range.
Each decibel-scale spectral vector is normalized with the rms

energy envelope, thus yielding a normalized log-power version
of the ASE called NASE. The full-rank features for each frame
consist of both the rms-norm gain value and the NASE vector

as follows:

(5)

(6)

where is the number of ASE spectral coefficients and is the
total number of frames.

Much of the information is disregarded due to the lower fre-
quency resolution when reducing the spectrum dimensionality
from to the frequency bins of NASE.

In order to achieve a tradeoff between further dimensionality
reduction and information loss, the ASB and audio spectrum
projection (ASP) MPEG-7 low-level audio descriptors are
used. To obtain the ASB, PCA or SVD [16], [17] and the more
recently developed ICA perform high-dimension multivariate
statistical analysis. PCA decorrelates the second-order mo-
ments corresponding to low-frequency properties and extracts
orthogonal principal components of variations. ICA, on the
other hand, is a linear but not necessarily orthogonal transform,
which makes unknown linear mixtures of multidimensional
random variables as statistically independent as possible. It not
only decorrelates the second-order statistics but also reduces
higher order statistical dependencies. It extracts independent
components even if their magnitudes are small, whereas PCA
extracts only components with the largest magnitudes. Thus, in
the feature extraction process, the ICA representation captures
the essential basis functions of the data.

Therefore, the next step of feature extraction in this paper is to
extract a subspace from the NASE using a PCA algorithm. Then,
to yield a statistically independent or uncorrelated component
basis, the FastICA [18] algorithm is used. Some preprocessing
such as centering and whitening is useful before using FastICA
to estimate the uncorrelated basis functions matrix . In the
following, will represent the input signal in the form of a

time-frequency matrix. The vertical dimension represents
time (i.e., each row corresponds to a time frame index ), and the
horizontal dimension represents the spectral coefficients (i.e.,
each column corresponds to a frequency range index ).

First, the columns should be centered by subtracting the mean
value from each one as follows:

(7)

(8)

where is the mean of the column .
Then, the rows should be standardized by removing any dc

offset and normalizing the variance as follows:

(9)

(10)

(11)

(12)

where is the mean, is the energy of the NASE, and
is the standard deviation of the row . In a further step, the
columns are whitened, which means that they are linearly trans-
formed to remove any linear correlations between the dimen-
sions. Whitening can be performed via eigenvalue decomposi-
tion of the covariance matrix

(13)

(14)

where is the matrix of orthogonal eigenvectors and is a
diagonal matrix with the corresponding eigenvalues. In order to
perform dimensionality reduction, we reduce the size of the ma-
trix by throwing away of the columns of corre-
sponding to the smallest eigenvalues of . We call the resulting
matrix , which has the dimensions . The whitening is
done by multiplying the transformation matrix with
the matrix as follows:

(15)

This method of whitening is closely related to PCA. After
extracting the reduced PCA basis , a further step consisting
of basis rotation in the directions of maximal statistical indepen-
dence is needed for applications that require maximum decorre-
lation of features, such as the separation of source components
of a spectrogram. A statistically independent basis is derived
using an additional step of ICA after PCA extraction. The input

is then fed to the FastICA algorithm, which maximizes the
information in the following six steps.

Step 1) Initialize spectrum basis to small random values,
where is the number of independent components.
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Step 2) Apply Newton’s method as follows:

(16)

where is the derivative of the nonquadratic func-
tion.

Step 3) Normalize the spectrum basis approximation as
follows:

(17)

Step 4) Decorrelate using Gram–Schmidt orthogonalization
as follows:

(18)

After every iteration step, subtract from the pro-
jections , of the previously
estimated vectors.

Step 5) Renormalize the spectrum basis approximation as
follows:

(19)

Step 6) If not converged, go back to step 2).
The purpose of the Gram–Schmidt decorrelation/orthogonal-

ization performed in the algorithm is to avoid finding the same
component more than once. When the tolerance becomes close
to zero, the Newton method will usually keep converging toward
that solution, and so, by turning off the decorrelation when al-
most converged, the orthogonality constraint is loosened. Steps
1)–6) are executed until convergence. Then the iteration per-
forming only the Newton step and normalization are carried out
until convergence . With this modification, the true
maximum is found. The basis function obtained by PCA
and ICA is stored in the MPEG-7 basis function database for the
classification scheme. The resulting spectrum projection is the
product of the NASE matrix , the dimension-reduced PCA
basis functions , and the ICA transformation matrix as
follows:

(20)

This spectrum projection is compliant with the spectrum pro-
jection from the MPEG-7 standard and is used to represent low-
dimensional features of a spectrum after projection onto a re-
duced-rank basis.

B. Training HMMs

In order to train a statistical model on the basis projection fea-
tures for each audio class, the MPEG-7 audio classification tool
uses HMMs, which consist of several states. During training,
the parameters for each state of an audio model are estimated
by analysing the feature vectors of the training set. Each state
represents a similarly behaving portion of an observable symbol
sequence process. At each instant in time, the observable symbol
in each sequence either stays at the same state or moves to an-
other state depending on a set of state transition probabilities.
Different state transitions may be more important for modeling

Fig. 3. HMM for a given sound class i.

Fig. 4. Example classification scheme using HMMs.

different kinds of data. Thus, HMM topologies are used to de-
scribe how the states are connected. In television broadcasts,
temporal structures of video sequences require the use of an
ergodic topology, where each state can be reached from any
other state and can be revisited after leaving. In our case, a
five-state left–right model is suitable for speaker and isolated
sound recognition. A left–right HMM with five states is trained
for each sound class.

Fig. 3 illustrates the training process of a HMM for a given
sound class .

The training audio data is first projected onto the basis
function corresponding to sound class . The HMM param-
eters are then obtained using the well-known Baum–Welch
algorithm [14]. The procedure starts with random initial values
for all of the parameters and optimizes the parameters by
iterative reestimation. Each iteration runs through the entire set
of training data in a process that is repeated until the model
converges to satisfactory values. The parameters converged
after three training iterations.

With the Baum–Welch reestimation training patterns, one
HMM is computed for each class of sound that captures the
statistically most regular features of the sound feature space.
Fig. 4 shows an example classification scheme consisting of
dogs, laughter, gunshots and motors. Each of the resulting
HMMs is stored in the MPEG-7 sound classifier.

C. Sound Classification Using Spectrum Projections and
HMMs

Sounds are modeled according to category labels and repre-
sented by a set of HMM parameters. Automatic classification
of audio uses a collection of HMMs, category labels, and basis
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Fig. 5. Block diagram of the classification using spectrum basis projection features.

functions. Automatic audio classification finds the best-match
class for an input sound by presenting it to a number of HMMs
and selecting the model with the maximum likelihood score.

Here, the Viterbi algorithm is used as the dynamic program-
ming algorithm applied to the HMM for computing the most
likely state sequence for each model in the classifier given a test
sound pattern. Thus, given a sound model and a test sound pat-
tern, a maximum accumulative probability can be recursively
computed at every time frame according to the Viterbi algo-
rithm.

Fig. 5 depicts the recognition module used to classify an audio
input based on pretrained sound class models (HMMs). Sounds
are read from a media source format, such as WAV files. Given
an input sound, the NASE features are extracted and projected
against each individual sound model’s set of basis functions,
producing a low-dimensional feature representation. Then, the
Viterbi algorithm is applied to align each projection on its corre-
sponding sound class HMM (each HMM has its own represen-
tation space). The HMM yielding the best maximum-likelihood
score is selected, and the corresponding optimal state path is
stored.

D. Audio Retrieval Using a Histogram Sum of Squared
Differences

An input sound is indexed by selecting the HMM yielding
the maximum-likelihood score and storing the corresponding

optimal HMM state path, which was obtained using the Viterbi
algorithm. This state path describes the evolution of a sound
through time with a sequence of integer state indices.

The MPEG-7 standard proposes a method for computing the
similarity between two state paths generated by the Viterbi al-
gorithm. This method, based on the sum of squared differences
between “state path histograms,” is explained in the following.

A normalized histogram can be generated from the state path
obtained at the end of the classification procedure. Frequencies
are normalized to values in the range obtained by dividing
the number of samples associated with each state of the HMM
by the total number of samples in the state sequence as follows:

(21)

where is the number of states in the HMM and is the
number of samples for state in the given state path.

A similarity measure between two state paths and is com-
puted as the absolute difference between each relative frequen-
cies summed over state indices . This gives the
Euclidian distance between the two sounds indexed by and
as

(22)
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(a) (b)

Fig. 6. NASE for: (a) an automobile horn and (b) for an old telephone ringing.

(a) (b)

Fig. 7. PCA basis vectors: (a) for horns and (b) for a telephone ringing.

III. EXPERIMENTAL RESULTS

In order to evaluate the efficiency of our MPEG-7 audio
descriptors, the reduced-dimension basis projection features
were applied to a generalized sound and speaker classification
system. The sound classification will be useful for film/video
indexing, searching, and professional sound archiving. On the
other hand, the speaker classification is useful for radio and
television broadcasts.

A. Plots of MPEG-7 Audio Descriptors

To help the reader visualize the kind of information that the
MPEG-7 audio descriptors convey, several results for four of the
ASE and ASP descriptors are depicted in Figs. 6–9.

First we calculated the NASE, which is simply a power spec-
trum with logarithmically spaced frequency coefficients. The
first coefficient represents power between 0 and the default “low
edge” of 62.5 Hz, the next 28 coefficients represent 1/4-octave
bands between 62.5 Hz and 8 kHz (seven octaves), and the 30th
coefficient corresponds to the power between the “high edge”
of 8 kHz and the Nyquist rate, which is 11.025 kHz.

The first sound is that of a typical automobile horn being
honked once for about 1.5 s. Then the sound decays for roughly
200 ms. The reader should note that the harmonic nature of the
honk, shown by the almost time=independent spectral peaks of
the NASE , is readily visible in Fig. 6(a).

The decay at the end can also be seen as the higher frequen-
cies decay and the lower frequencies seem to grow in strength.
The lower frequencies becoming stronger may seem out of
place, but this phenomenon is actually due to the normalization.
As the sound in general becomes quieter, the levels at the

(a) (b)

Fig. 8. FastICA basis vectors: (a) for horns and (b) for a telephone ringing.

(a) (b)

Fig. 9. Projection of NASE onto basis vectors for: (a) an automobile horn and
(b) for an old telephone ringing.

different frequencies become more even and all are boosted by
the normalization, even the low ones.

The NASE of an old telephone being rung once is de-
picted in Fig. 6(a). The first 0.7 s consist of the noise-like sound
of the manual cranking necessary for old-fashioned telephones,
while the rest of the sound consists of the harmonic sound of the
bells ringing out. That is, distinguishing between the harmonic
and noise-like parts of sounds is easy per visual inspection of
the NASE.

While the visual interpretation of the NASE is rather easy,
visual interpretation of the bases in Fig. 7 is not as straight-
forward.

Each of these bases is a matrix, which can be thought as a
linear transformation between a spectral domain containing cor-
related information (NASE) and PCA basis vectors, in which the
correlations in the information are reduced.

However, since we may not know exactly how the correla-
tions are being reduced in each case, the bases are difficult to
interpret. For instance, one can see in the PCA bases that the
first basis vectors calculated are rather simple and have small
variances, while the last basis vectors that are calculated tend to
be complicated, have larger variances, and be less well behaved
in general. This phenomenon corresponds to the fact that, as the
algorithm extracts basis vectors, it becomes more and more dif-
ficult to find meaningful basis vectors because much of the in-
formation has already been extracted. The PCA algorithm also
tends to find basis vectors that have large amplitudes, but not
necessarily those that convey more information.

The FastICA algorithm, however, uses a nonlinear technique
to help decorrelate the NASE. As a result, the bases generated
via FastICA have more peaks on average due to larger variances.
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The FastICA basis is shown in Fig. 8(a) for horns and in
Fig. 8(b) for telephone sounds.

The projections , on the other hand, look
like versions of the NASE where the frequency information
is scrambled by the basis. As can be verified in Fig. 9, telling
apart the harmonic and noise-like parts of the sounds is still
possible.

B. Experiments With Speaker Recognition

1) Datasets: For speaker recognition, 25 speakers were
used, 11 male and 14 female. Each speaker was instructed to
read 15 different sentences. After we used a sampling rate of
22.05 kHz to record the speakers reading the sentences, we
cut the recordings into smaller clips: 16 training clips (about
60 s total), 5 additional longer training clips (60 s), and 5 test
clips (20 s) per speaker. In order to determine if the amount of
training data plays an important role for the different feature
extraction methods, we defined two different training sets:
the smaller set included only the 16 training clips and was 60
s long, and the larger set included the original 16 plus the 5
additional longer clips and was about 120 s long.

2) Classification and Results: Our goal was to compare the
performance of NASE, PCA, ICA, and MFCC methods for
speaker recognition.

For classification purposes, left–right HMM classifiers with
five states were used to model each speaker. For each feature
space (NASE, PCA, ICA, and MFCC), a set of 25 HMMs was
trained using a classical expectation and maximization (EM)
algorithm.

In the case of NASE, the matching process was easy because
there were no bases. We simply matched each test clip against
each of the 25 HMMs (trained with NASE features) via the
Viterbi algorithm. The HMM yielding the best acoustic score
(along the most probable state path) determined the recognized
speaker.

In the case of the PCA and ICA methods, each HMM had
been trained with data projected onto a basis as depicted in
Fig. 5. So, every time we tested a sound clip on an HMM, we had
to first project the sound clip’s NASE onto the basis (ASB). This
process caused testing to last considerably longer, as each test
clip had to be projected onto 25 different bases, before it could
be tested on the 25 HMMs to determine what it should be rec-
ognized as. On the other hand, the performance due to the pro-
jection onto the well-chosen bases increased recognition perfor-
mance considerably. In order to perform a tradeoff between di-
mensionality reduction and information content maximization,
feature extraction parameters in PCA and ICA needed to be se-
lected with care.

The parameter with the most drastic impact turned out to be
the horizontal dimension of the matrix from PCA. If
was too small, the matrix reduced the data too much, and
the HMMs did not receive enough information. However, if
became too large, then the extra information extracted was not
very important and would have better been ignored. The recog-
nition rate versus from the PCA and ICA methods for the
smaller training set are depicted in Fig. 10.

Fig. 10. Effect of E on recognition rates obtained with PCA and ICA.

TABLE I
SPEAKER RECOGNITION RESULTS

As can be seen above, the best value for both methods was
23. However, this was not always the case. We also generated
the plot for speaker recognition among six male speakers, which
revealed that the optimal dimension for should be 16, so it
seems that one needs to be careful about choosing and might
have to test empirically to find the optimal value.

The results of our tests using the different feature extraction
methods are shown in Table I.

For PCA and ICA, we simply took the recognition rate cor-
responding to , even though in one case the recognition
rate was 1.5% higher for (PCA, with larger training
set).

Regarding the recognition of 25 speakers, ICA yields better
performance than do PCA and NASE features. The resulting
93.6% recognition rate using ASE and ASP of MPEG-7 audio
descriptors appears to be slightly higher than the 93.1% recog-
nition rate of only 13 MFCCs, but explicitly lower than the 98%
recognition rate that we obtained with 13 MFCCs, their 13 delta
and 13 double-delta acceleration coefficients because dynamic
features such as delta and double-delta provide estimates of a
gross shape (linear and second-order curvature) of a short seg-
ment of feature trajectory. It appears that MFCC, which is not an
MPEG-7 feature, outperforms MPEG-7. To test gender recogni-
tion, we used the smaller set. Two HMMs were trained: one with
the training clips from female speakers and the other with the
training clips from male speakers. Because there were only two
possible answers to the recognition question: male or female,
this experiment was naturally much easier to carry out and re-
sulted in excellent recognition rates, as depicted in Table I. The
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term 100% indicates that zero mistakes were made out of 125
test sound clips.

C. Sound Recognition

1) Building the Sound Libraries: To test the sound recog-
nition system, we built sound libraries from various sources
including the speech database that we collected for speaker
recognition (see Section III-B1) and the “Sound Ideas” general
sound effects library. We created 12 sound classes containing
40 training and 20 different testing sound clips, which were
recorded at 22 kHz and 16 b and which ranged from 1 to 3 s
long.

2) Classification Using a One-Level Structure: We used a
simple sound recognition system using a one-level structure (no
hierarchy), as depicted in Fig. 11.

After calculating the NASE for each of our training clips,
we used this data to calculate a basis for each class using the
FastICA algorithm. Then, we projected the NASEs from the
training clips onto their respective bases and used these projec-
tions to train one HMM per class.

For testing, we calculated the NASE for each test clip and pro-
jected this data onto all of the bases generated from the training
data. Next, we passed the projections to their respective hidden
Markov models to calculate the maximum-likelihood scores.
The highest score was used to determine the test clip’s recog-
nized sound class.

It is important to note that, for the recognition results, we did
not use any sort of hierarchy to find a path from a root node to
the recognized sound class; rather, all of the classes were tested
at once and compared on one level.

This method is the most straightforward but would cause
problems when there were too many classes on the one level.

3) Classification Using a Hierarchical Classification Struc-
ture: We organized the database of sound classes on the hard
disk using the hierarchy shown in Fig. 12, assuming that partic-
ular sound classes, such as female speech and male speech, were
more closely related than others such as female speech and gun.

Because we had modeled the database in this fashion, we de-
cided to try using the same hierarchy for recognition, to see what
effect it would have on the recognition rate. That is, we created
additional bases and HMMs for the more general classes an-
imal, foley, people, and speech.

For each test sound, a path was found from the root down to
a leaf node with testing occurring at each level in the hierarchy.

4) Classification Using a Hierarchical Classification Struc-
ture With Hints: In certain systems, it would be feasible to as-
sume that additional information were already available. For in-
stance, it would be possible to have a recording of human speech
but not be able to tell the gender of the speaker by ear.

The hint speech could be given, so that the program could de-
termine what gender the speaker is with higher accuracy. In the
following, each sound clip was assigned a hint, so that only one
decision per clip needed to be made by the sound recognition
program.

5) Results With the Different Classification Methods: Table II
describes the recognition results with different classification
structures.

Fig. 11. Classification using a one-level structure (i.e., no hierarchy). Compare
with Fig. 12.

Fig. 12. Hierarchy for classification using a tree structure.

TABLE II
RECOGNITION RATES OF DIFFERENT COMPARISON STRUCTURES

We achieved a 96% recognition rate with the classification
using a single-level structure. This recognition rate appears to
be slightly lower than the 97.7% recognition rate obtained with
39 MFCCs (13 cepstral coefficients plus their first- and second-
order derivatives).

In the classification using hierarchical classification without
hints, the best recognition rate that we achieved was 91% with
the dimension . The recognition rate is lower compared
to that of the single-level structure because the system could
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TABLE III
RESULTS USING A TREE STRUCTURE

not handle the generality well. Many of the new errors were due
to problems with recognition in the highest layer, which we at-
tribute to the fact that sound samples in different branches of the
tree were too similar. For example, some bird sounds and horn
sounds were difficult to tell apart with the human ear. Using a
hierarchical structure for sound recognition does not necessarily
improve recognition rates if sounds in different general classes
are too similar unless some sort of additional information (e.g.,
a hint) is available. The hierarchical classification with hints
yields a higher recognition rate than a one-level structure or
hierarchical classification without hints. We obtained a recog-
nition rate of 99% via the FastICA algorithm with the optimal
dimension . Again, the general shape of the plot of the
recognition rates was the same as in Fig. 10.

6) Audio Retrieval Results: Once an input sound has been
recognized as a sound of class , the state paths of the sounds
in the MPEG-7 database, which belong to class , can be com-
pared to the state path of using the Euclidean distance
as described in Section II-D. These sounds can then be sorted
so that those corresponding to the smallest distances are at the
top of the list. That is, the items which are the most similar to
the query should be at the top of the list and the most dissimilar
ones at the bottom.

This system would basically be a search engine for similar
sounds within a given sound class. In the example below, tele-
phone_28 was input as a test sound and recognized as

. The list of the retrieved items indexed with tele-
phone, sorted by similarity with query telephone_28, is shown
in Table III.

The maximum-likelihood scores used for classification are
also included in Table III, so that the reader can note that
calculating the similarity by comparing the state paths and by
comparing the maximum-likelihood scores produce different
results. As far as we know, there have not been any tests to show
which technique of calculating similarity better corresponds to
that of the human hearing system.

If, however, the sound had been incorrectly recognized as
something else, such as bell, we would have searched in the bell
class for similar training data and found irrelevant results. Thus,
it would have been better to have also searched the second and/or
third most likely classes while hoping that telephone were one
of these.

In the tests of this method, we used training data from the
three classes with the highest maximum-likelihood scores to
produce a list sorted by the Euclidean distance between the
query and each of the retrieved items. This method seemed
promising but would often produce inconsistent lists including

TABLE IV
CONSISTENCIES

data from different classes mixed up with each other. We de-
cided to compare the reliability of this retrieval technique using
different methods for recognition.

To compare lists of similar items, we used our own measure
called consistency. A list is consistent when the elements next
to each other belong to the same class, and a list is inconsis-
tent when any two adjacent elements always belong to different
classes. We used the following method to calculate the consis-
tency of a retrieval method. sound clips are tested to pro-
duce lists of similar sounds, such that . Let

be the length of the list , and let be the number of
times that two adjacent entries in the list belong to the same
class. Compute the consistency according to

(23)

(24)

Thus, the consistency is a real number between 0 and 1, where
0 is as inconsistent as possible and 1 is as consistent as possible.

Using the same library of test sounds, we then measured the
inconsistency for retrieval methods using NASE, PCA projec-
tions, and FastICA projections as input to the HMMs. As it
was also possible to measure the similarity using just the max-
imum-likelihood scores, we also listed those results in Table IV.

The results reflect what we expected, namely, that the lists of
similar sounds were more consistent, if we used the state paths
instead of the maximum-likelihood scores for comparison.
We attribute this result to the fact that the state paths contain
more information because they are multidimensional whereas
the maximum-likelihood scores are one-dimensional. Thus,
our best technique for retrieving similar sounds is the FastICA
method using the state paths for comparison.

IV. CONCLUSION

In this paper, we applied the ASB and ASP MPEG-7 audio
descriptors to two recognition systems: a speaker recognizer and
a sound classification and retrieval system. The speaker recog-
nizer, tested with 14 female and 11 male speakers, yields a high
recognition rate. For comparison, standard MFCC with delta
and double-delta features were extracted. The experimental re-
sults showed that the recognition rate using 23 dimensional ASP
features was slightly lower than 39 dimensional MFCC feature
vectors. But the ASP features using ICA basis functions demon-
strated better speaker and gender recognition performance than
the NASE features and the PCA basis projection features.

The sound classification module achieved high recognition
rates on 12 different sound classes. The use of a hierarchical
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structure with hints of sound classes improved the classification
accuracy compared to a hierarchical structure without hints and
a single-level system.

The sound retrieval system relies on the performance of the
classifier. Our retrieval system is based on a distance metric al-
lowing to compare 2 state paths in conformance with the audio
part of the MPEG-7 standard. The approach proposed in this
paper consists in retaining the three most likely sound class hy-
potheses in order to cope with possible recognition errors. Even
in case of a classification error, most of the retrieved sounds may
thus be part of the correct class. We also proposed a consistency
measure to evaluate the homogeneity of such mixed result lists.
Some tests reveal that PCA- and ICA-based classification yield
more consistent retrieval results using MPEG-7 conform state
path descriptors rather than HMM acoustic scores. This retrieval
approach should be refined in the future by investigating the use
of additional MPEG-7 features for training and testing along
with other methods for evaluating the consistency of a retrieval
result list. Moreover, it would be interesting to compare the re-
trieval results with human subjective tests of sound similarity. In
future research, we will focus on improving the MPEG-7 sound
classification using various HMM topologies. This will be ap-
plied to news and home video hierarchical indexing.
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