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Abstract 

Our purpose is to evaluate the efficiency of MPEG-7 audio 
descriptors for speaker recognition. The upcoming MPEG-7 
standard provides audio feature descriptors, which are useful 
for many applications. One example application is a speaker 
recognition system, in which reduced-dimension log-spectral 
features based on MPEG-7 descriptors are used to train hidden 
Markov models for individual speakers. The feature extraction 
based on MPEG-7 descriptors consists of three main stages: 
Normalized Audio Spectrum Envelope (NASE), Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA). An experimental study is presented where the 
speaker recognition rates are compared for different feature 
extraction methods. Using ICA, we achieved better results 
than NASE and PCA in a speaker recognition system. 

1. Introduction 

A typical speech or speaker recognition system consists of 
three main modules: feature extraction, pattern classification 
and decoder with speech modeling. Because feature extraction 
influences the recognition rate greatly, it is important in any 
pattern classification task. Feature extraction unifies the 
features of the same pronunciations by removing irrelevant 
information and distinguishes between the features of different 
pronunciations by highlighting relevant information. Among 
the most widely used features for speaker recognition is a 
technique based on a short-term spectrum of speech, where 
Fourier basis speech signals are decomposed into a 
superposition of a finite number of sinusoids, which are used 
for speaker recognition. Using such features, it is not always 
possible to express the domain’s statistical structure, but it 
assumes that all signals are infinitely stationary and that the 
probabilities of the basis functions are all equal. In contrast, 
Principal Component Analysis (PCA) [1] and the more 
recently  developed Independent Component Analysis (ICA) 
[2][3] perform high dimension multivariate statistical analysis. 
PCA decorrelates the second order moments corresponding to 
low frequency properties and extracts orthogonal principal 
components of variations. ICA, on the other hand, is a linear 
but not necessarily orthogonal transform, which makes 
unknown linear mixtures of multi-dimensional random 
variables as statistically independent as possible. It not only 
decorrelates the second order statistics but also reduces higher-
order statistical dependencies. It extracts independent 
components even if their magnitudes are small, whereas PCA 
extracts only components with the largest magnitudes. Thus, 
ICA representation seems to capture the essential structure of 
the data in feature extraction and signal separation. The 
spectrum basis generated by techniques such as PCA and ICA 
and it’ s projection have been suggested for feature extraction 

by the MPEG-7 audio group. MPEG-7 [4] is a standardization 
initiative of the Motion Pictures Expert Group that, instead of 
focusing on coding such as MPEG-1, MPEG-2 and MPEG-4, 
is meant to be a standardization of the way to describe 
multimedia content. Although MPEG-7 focuses on indexing, 
searching, and retrieval of audio, the low-level feature 
extraction audio descriptors have very general applicability in 
describing not only environmental sounds, but also in 
describing speech.  
      In this paper, we evaluate a basis projection method using 
MPEG-7 descriptors for the analysis of speaker variability and 
for the extraction of low-dimensional speech features. 

2. Extracting speech features with a spectrum  
basis projection of MPEG-7 descr iptors 

It is widely known that direct spectrum-based features are 
generally incompatible with classification applications due to 
their high dimensionality and their inconsistency. To address 
the problems of dimensionality and redundancy, whilst 
keeping the benefits of complete spectral representations,  
MPEG-7 sound recognition frameworks [4][5][6] use a 
method of projection onto a low-dimensional subspace via 
reduced-rank spectral basis functions. The system diagram in 
Figure 1 shows the MPEG-7 extraction scheme for speech 
spectrum basis and speech recognition features. 
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Figure 1: Block diagram of spectrum basis projection 
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We apply this general system to speech signals by calculating 
a basis for each speaker and then projecting the speaker’s data 
onto his or her basis. 
First, the observed speech signal ( )ns  is divided into 

overlapping frames by the application of a hamming window 
function and analyzed using the short-time Fourier transform 
(STFT)  
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where k is the frequency bin index, l  is the time frame index, 
w is an analysis window of size lw , and M is the hop size. 
By Parseval’ s theorem (i.e., so that power is preserved) there 
is a further factor of N/1  to equate the sum of the squared 
magnitude of the STFT coefficients to the sum of the squared, 
zero-padded, windowed signal as 
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To extract reduced-rank spectral features, the spectral 
coefficients ( )lkP ,  are grouped in logarithmic sub-bands. 

Frequency channels are logarithmically spaced in non-
overlapping ¼-octave bands spanning between 62.5 Hz, which 
is the default “ low edge”  and 8 kHz, which is the default 
“high edge” . The output of the logarithmic frequency range is 
the weighted sum of the power spectrum in each logarithmic 
sub-band. The spectrum according to a logarithmic frequency 
scale, which the MPEG-7 standard refers to as Audio 
Spectrum Envelope (ASE), consists of one coefficient 
representing power between 0 Hz and low edge, a series of 
coefficients representing power in logarithmically spaced 
bands between low edge and high edge, and a coefficient 
representing power above high edge.  
The resulting log-frequency power spectrum is converted to 
the decibel scale  

 ( ) ( )( )lfASElfD ,log10, 10= , (3) 

where f is the logarithmic frequency range. 

Finally, each decibel-scale spectral vector is normalized with 
the RMS (root mean square) energy envelope, thus yielding a 
normalized log-power version of the ASE (NASE). The full-
rank features for each frame l  consist of both the RMS-norm 
gain value 

lR  and the normalized ASE (NASE) vector
lX : 
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where F is the number of  ASE spectral coefficients and L is 
the total number of frames.  
 
      To help the reader visualize the kind of information that 
the NASE vectors 

lX  convey, 3D-plots of the NASE of a 

male and a female speaker reading the sentence “Handwerker 
trugen ihn”  are shown in Figure 2. In order to make the 

images look smoother, the frequency channels are spaced with 
1/16-octave bands instead of the usual ¼-octave bands. The 
reader should note that recognizing the gender of the speaker 
by visual inspection of the plots is easy – compared to the 
female speaker, the male speaker produces more energy at the 
lower frequencies and less at the higher frequencies. 
 

 

 

Figure 2:  3D-plots of the normalized ASE of a male 
speaker and a female speaker 

The next step in the feature extraction is to extract a subspace 
using PCA from the NASE. Then, to yield a statistically 
independent component basis, the FastICA [7] algorithm is 
used. Some preprocessing is useful before using FastICA to 
estimate the un-mixing or uncorrelated matrix W . In the 
following, the rows represent the spectral vectors and the 
columns represent the time frames. First the rows should be 
centered by subtracting the mean value of each column from 
the column: 
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where 
fµ  is the mean of the column f. 

Standardizing the columns by making sure that the rows have 
no DC-offset and a unit variance is also a good idea:  
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where 
lµ  is the mean, 

lχ  is the energy of the whitened NASE 

and 
lΓ  is the standard deviation of the row l. In a further step 

the columns are whitened, which means that they are linearly 
transformed so that the components are uncorrelated and have 
unit variance. Whitening can be performed via eigenvalue 
decomposition of the covariance matrix  
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where V is the matrix of orthogonal eigenvectors and D  is a 
diagonal matrix with the corresponding eigenvalues. The 
whitening is done by multiplication with the transformation 

FF ×  matrix  
PC  and FL ×  matrix 

∧
X   : 
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This method of whitening is closely related to PCA. After 
extracting the reduced PCA basis 

PC , a further step consisting 

of basis rotation in the directions of maximal statistical 
independence is required for applications that require 
maximum separation of features, such as the separation of 
source components of a spectrogram. A statistically 
independent basis is derived using an additional step of ICA 
after PCA extraction. The input basis vectors are then fed to 
the FastICA algorithm, which maximizes the information with 
the following six steps:  

1. Initialize spectrum basis 
iW  to small random values 

2. Newton method 
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            where g  is the derivative of non-quadratic function. 

3. Normalization 
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4. De-correlation by Gram-Schmidt orthogonalization 
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5. Normalization 
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6. If not converged, go back to step 2. 
 

The purpose of the Gram-Schmidt decorrelation/orthogonali-
zation performed in the algorithm is to avoid finding the same 
component more than once. When the tolerance becomes close 
to zero, the Newton method will usually keep converging 
towards that solution, and so by turning off the decorrelation 
when almost converged, the orthogonality constraint is 
loosened. Steps 1-6 are executed until convergence. Then the 
iteration performing only the  Newton step  and normalization 
are done until convergence 1=T

iiWW . With this 

modification the true maximum is found. 
The resulting spectrum projection is the product of the 

whitened observation matrix 
∨
X , the dimension-reduced PCA 

basis functions 
PC  and the ICA transformation matrix W : 

 WCXY P

∨
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This spectrum projection is the compliant with the spectrum 
projection from the MPEG-7 standard and is used to represent 
low-dimensional features of a spectrum after projection onto a 
reduced rank basis. 

3. Training using real data and recognition 
exper iments 

For speaker recognition, 25 speakers were used, 11 male and 
14 female. Each speaker was instructed to read 15 different 
sentences. After we used a sampling rate of 22.05kHz to 
record the speakers reading the sentences, we cut the 
recordings into smaller clips: 16 training clips (about 60 
seconds total), 5 additional longer training clips (60 s.), and 5 
test clips (20 s.) per speaker. In order to determine if the 
amount of training data plays an important role for the 
different feature extraction methods, we defined two different 
training sets: the smaller set included only the 16 training 
clips and was 60 seconds long, and the larger set included the 
original 16 plus the 5 additional longer clips and was about 
120 seconds long. Each speaker was modeled by a left-right 
HMM with 5 states. For each feature space (NASE, PCA, 
ICA), a set of 25 HMMs was trained using a classical 
Expectation and Maximization (EM) algorithm. 
      In the case of NASE, the matching process was easy 
because there were no bases. We simply matched each test 
clip against each of the 25 HMMs (trained with NASE 
features) via the Viterbi algorithm. The HMM yielding the 
best acoustic score (along the most probable state path) 
determined the recognized speaker. 
      In the case of the ICA and PCA methods, each HMM had 
been trained with data projected onto a basis as depicted in 
Figure 3. So, every time we tested a sound clip on an HMM, 
we had to first project the sound clip’s NASE onto the 
HMM’s basis. On the one hand, this process caused testing to 
last considerably longer, as each test clip had to be projected 
onto 25 different bases, before it could be tested on the 25 
HMM’s to determine what it should be recognized as, but on 
the other hand, the performance due to the projection onto the 
well-chosen bases increased performance considerably. In 
order to obtain good results with the PCA and ICA algorithms, 
feature extraction parameters needed to be selected with care. 
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Figure 3:  Block diagram of the classification using 
spectrum basis projection features. 

The parameter with the most drastic impact turned out to be 
the horizontal dimension M of the matrix 

PC  from PCA. If M 

was too small, the matrix 
PC  reduced the data too much, and 

the hidden Markov models did not receive enough 
information. However, if M became too large, then the extra 
information extracted was not very important and would have 
better been ignored. The recognition rate versus M from the 
PCA and ICA methods for the smaller training set are 
depicted in Figure 4: 

 
Figure 4:  Comparison of  recognition rate of PCA   
and ICA. 

As can be seen above, the best value for both methods M was 
23. However, this was not always the case. We also generated 
the plot for speaker recognition among 6 male speakers, 
which revealed that the optimal dimension for M should be 
16, so it seems that one needs to be careful about choosing M 
and might have to test empirically to find the optimal value. 
     The results of our tests using the different feature 
extraction methods are shown in Table 1. For PCA and ICA 
we simply took the recognition rate corresponding to M = 23, 
even though in one case the recognition rate was 1.5% higher 
for M = 28 (PCA, with larger training set). 
Regarding the recognition of 25 speakers, ICA yields better 
performance than PCA and NASE features. The resulting 

recognition rates (90.4-93.6%) using MPEG-7 conform audio 
descriptors appear to be slightly lower than the 98% 
recognition rate that we obtained with classical Mel-
Frequency Cepstral Coefficients (MFCC). However, many 
applications that are likely to employ MPEG-7 descriptions in 
the future are not security applications and may thus not 
necessarily require very high speaker recognition rates. 
To test gender recognition, we used the smaller set. Two 
HMMs were trained: one with the training clips from female 
speakers, the other with the training clips from male speakers. 
Because there were only two possible answers to the 
recognition question: male or female, this experiment was 
naturally much easier to carry out and resulted in excellent 
recognition rates, as depicted in Table 1. 100% indicates that 
0 mistakes were made out of 125 test sound clips. 

Table1: Comparison of speaker recognition accuracies 
(%)  between several feature extraction methods. 

Recognition Mode Norm. 
ASE 

PCA ICA 

Speaker recognition 
(small set) 

 
80.8 

 
90.4  

 
91.2  

Speaker recognition 
(larger set) 

 
80  

 
85.6  

 
93.6  

Gender recognition 
(small set) 

 
98.4  

 
100  

 
100  

4. Conclusions 

In this paper, the use of spectrum basis projection features 
based on the MPEG-7 standard for the purpose of speaker 
recognition were introduced and analyzed. The spectrum basis 
functions were computed from the NASE using a basis 
decomposition algorithm such as PCA and FastICA. An 
experimental 25 speaker recognition system was implemented 
using reduced-rank projection features (in conformance with 
the MPEG-7 standard) and HMM classifiers. The ICA basis 
projection features demonstrated better speaker and gender 
recognition performance than the NASE features and the PCA 
basis projection features. 
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