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Abstract
This paper presents a speech enhancement method for noise ro-
bust front-end and speech reconstruction at the back-end of Dis-
tributed Speech Recognition (DSR). The speech noise removal
algorithm is based on a two stage noise filtering LSAHT by log
spectral amplitude speech estimator (LSA) and harmonic tun-
neling (HT) prior to feature extraction. The noise reduced fea-
tures are transmitted with some parameters, viz., pitch period,
the number of harmonic peaks from the mobile terminal to the
server along noise-robust mel-frequency cepstral coefficients.
Speech reconstruction at the back end is achieved by sinusoidal
speech representation. Finally, the performance of the system is
measured by the segmental signal-noise ratio, MOS tests, and
the recognition accuracy of an Automatic Speech Recognition
(ASR) in comparison to other noise reduction methods.

1. Introduction
The European Telecommunication Standards Institute (ETSI)
STQ-Aurora group has created a new work item to address the
standardization of an extended front-end for Distributed Speech
Recognition (DSR) of tonal languages as well as speech recon-
struction for DSR systems [1]. Figure 1 presents a block dia-
gram of future ETSI Aurora standards enabling DSR of tonal
languages and speech reconstruction. The noise robust features
are compressed and transmitted to the server for recognition
back-end processing. For speech reconstruction at back-end
server, the number of harmonic peaks and pitch period are trans-
mitted as additional parameters along with the DSR bit stream.
In this paper we apply the two stage LSAHT noise filtering
method to speech reconstruction at the back-end of the DSR
system under various noise conditions.

2. Noise robust front-end algorithm
The speech enhancement methods in combination with feature
extraction improve both speech recognition performance and
the quality of speech reconstruction under noisy conditions.
Usually, speech enhancement problem is addressed from the es-
timation point of view in which the clean speech is estimated
under the uncertainty of speech presence [2] in noisy obser-
vations. The idea of utilizing the uncertainty of speech pres-
ence in the noisy spectrum has been applied by many authors
to improve the performance of speech enhancement systems. In
this paper, we present a simple modified log-spectral amplitude
(LSA) speech estimator [2] and harmonic tunneling (HT) [3].
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Figure 1: Block diagram of DSR system

2.1. Noise Reduction

A simplified block diagram of a two stage noise filtering sys-
tem LSAHT based on LSA speech estimator and HT is shown
in figure 2. Let x(n) denote the 8 kHz sampled input speech,
which is assumed to be the sum of a clean speech s(n) and dis-
turbing noise d(n). The observed noisy signal x(n) is divided
into overlapping frames. A pre-emphasis filter is then used to
emphasize the higher frequency components. In the frequency
domain the short-time magnitude spectrum A(k, i) of x(k, i) at
time frame i and frequency bin k is estimated by:

X(k, i) = A(k, i)ejφ(k,i) (1)

As first noise reduction stage, the estimation of clean speech
is obtained by applying a modified log-spectral amplitude gain
function GLSA(k, i) to each spectral component of the noisy
speech signal:

O(k, i) = GLSA(k, i)A(k, i), (2)
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Figure 2: Block diagram of the speech enhancement

where GLSA(k, i) is derived by

GLSA(k, i) =
ξ(k, i)

1 + ξ(k, i)
exp

(

0.5

∫

∞

t=ν(k,i)

e−t

t
dt

)

, (3)

where the a posteriori signal-to-noise-ratio SNR γ(k, i), the a
priori SNR ξ(k, i), and ν(k, i) are defined as:
γ(k, i) = A(k,i)

λd(k,i)
, ν(k, i) = ξ(k,i)

1+ξ(k,i)
γ(k, i), and

ξ(k, i) = βGLSA(k, i − 1) γ(k,i)
1−q(k,i)

+ (1 − β)P{γ(k, i) − 1}

using

P{γ(k, i) − 1} =

{

γ(k, i) − 1 if γ(k, i) ≤ 1
0 otherwise

(4)

where β ∈ [0, 1] is the SNR smoothing factor, q(k, i) is an esti-
mate of speech absence priori probability and λd(k, i) is a noise
spectrum estimate. The spectral gain is modified by the speech
absence probability q(k, i), which is estimated for each fre-
quency bin and each frame, and which controls the update of the
estimated noise spectrum when speech is present. Therefore,
the noise estimate is obtained by averaging past spectral power
values by using a time-varying frequency-dependent smoothing
parameter. This parameter adjusted by the speech absence prob-
ability in adverse environments involving non-stationary noise,
weak speech components and low input SNR:

λd(k, i) = αd(k, i)λd(k, i − 1) + (1 − αd(k, i))A(k, i) (5)

using a smoothing parameter

αd(k, i) = 1 − Fd|γ(k, i − 1)|q(k, i) (6)

with Fd ∈ [0, 1] constant.
The a priori speech absence probability q(k, i) is controlled

by the result of the minimum tracking. The minimum val-
ues M(k, i) of an average E(k, i) of the short-time magnitude
spectrum are calculated within windows of S frames whether
speech is present or not. The minimum value for the current
frame is found by a comparison with the stored minimum value:

M(k, i) = min
s=0..S

{M(k, i − s), E(k, i)}, (7)

where the average of the short-time noisy spectrum is performed
over B frames by:

E(k, i) =
1

B

B−1
∑

i=0

A(k, i). (8)

The indicator function I(k, i) for the voice activity detector
is defined by

I(k, i) =







1 if A(k, i) < M(k, i)T (k, i)

E(k, i) < M(k, i)T̃ (k, i)
0 otherwise

(9)

using the thresholds T (k, i) = 1 + 4 exp
[

−GLSA(k, i − 1)
]

and T̃ (k, i) = 1 + 0.5 exp
[

−GLSA(k, i − 1)
]

. The a priori

probability for speech absence is then obtained by

q(k, i) = αqq(k, i − 1) + (1 − αq)I(k, i), (10)

where αq ∈ [0, 1] is the time-smoothing factor. Although
this LSA estimator proved very efficient in reducing musical
noise phenomena, low bit rate speech coders are very sensitive
to remaining residual background noise after LSA estimation.
Therefore, a second noise reduction stage is employed. From
the magnitude spectrum O(k, i) out of the first noise reduction,
the voicing level is obtained by normalizing spectral autocor-
relation at a lag equal to a pitch period in frequency domain.
At the next stage, the peak detector is used to find the number
of peaks and the frequency bin of the peak corresponding to
the highest harmonic within the auto-correlation. Each of these
candidate peaks is analyzed to categorize it as a peak coming
from either a voiced speech harmonic or noise. To determine
the harmonic amplitude O(h, i) and harmonic frequency in the
frame h, we do the following

O(h, i) = maxm∈[a,b](|O(m, i)|), (11)

where a = floor((harmo−c)(f0/Sr/N)) using the sampling
rate Sr and the estimated fundamental frequency f0, and b =
ceil((harmo + c)(f0/Sr/N)). c ∈ [0, 0.5] determines the
tolerated non-harmonicity. The estimate λHT (k, i) of the noise
is then obtained by sampling the noise spectrum in the tunnels
between the harmonic spectral peaks and by interpolation of
the frequency and time from the adjacent noise spectra in the
surrounding tunnels. Finally, the enhanced spectral amplitude
S̃(k, i) is achieved by spectral subtraction:

S̃(k, i) = O(k, i) − λHT (k, i). (12)

2.2. Mel cepstrum feature vector extraction

The noise-reduced power spectrum S̃(k, i) in the frequency
range between 64 Hz and 4000 Hz is then Mel-filtered. The
low-frequency components are ignored. The rest of the fre-
quency range is warped into a Mel-frequency scale using the
equation

Mel(k, i) = 2595 log10

(

1 +
k

700

)

. (13)

The Mel-frequency scale range is divided into 23 equal-
sized, half-overlapping bands. The output of the mel-filter is
the weighted sum of the noise-reduced magnitude spectrum in
each band as follows:

F (m, i) =

bm+δm
∑

k=bm−δm

S̃(k, i)Uδm
(k + bm) (14)

where each band wide δm = δm−1, the center of each band
bm = bm−1 + δm, and triangular filter

Uδm
(k) =

{

1 − |k|/δm if |k| < δm

0 otherwise
(15)

are applied. The 23 log-spectral values of mel-filtering are then
subjected to a natural logarithm function. With a 23-point Dis-
crete Cosine Transformation, 13 cepstral coefficients are calcu-
lated as follows:

C(κ, i) =
M
∑

m=1

log{|F (m, i)|} cos
[

κ(m − 0.5)
π

M

]

, (16)



where M is the number of triangular filter, κ is the number of
cepstrum coefficients.

For a low bit rate speech compression and decompression
we use the methods in [4] and [5]. The pitch period value is
quantized using 7 bits. The number of harmonic peaks is quan-
tized using 3 bits for the past, current and future frames. The
MFCC feature vectors are quantized using a 4-split VQ with 37
bits. The streams of the compressed MFCC feature vectors, the
compressed pitch period value, and the compressed number of
harmonic peaks are multiplexed together to form the output bit
stream for storage or transmission.

2.3. Reconstruction of speech at back-end server

The transmitted bit stream to server is fed into a stream of com-
pressed MFCC feature vectors, a stream of compressed pitch,
and a stream of number of harmonic peaks. The decompressed
MFCC feature vectors may be used by the speech recognition
back-end. For the speech reconstruction, the MFCC feature
vectors are transformed back into the Mel-frequency domain
by inverse DCT and the spectral magnitude is computed by ex-
ponentiation from the log-spectra [4]:

S̆(k, i) = exp
(

−
2

M

M
∑

s=1

C(s, i) cos
[ (2m + 1)sπ

2M

])

. (17)

Speech is synthesized using a harmonic sinusoidal model
from the decompressed MFCC feature vectors, the decoded
pitch values, and the number of harmonic peaks for voicing de-
cision by

s̃i(j) =

L−1
∑

l=0

S̄l(j) cos
(

φ̃l(j)
)

, (18)

where the speech sample s̃i(j) is synthetisized as the sum of a
number of harmonically related sinusoids with amplitude S̄l(j)
at multiples of the fundamental frequency and synthetic phase
φ̃. For voiced speech, the model is based on the assumption
that the perceptually important information resides mainly in
the harmonic samples of the pitch frequency. Because of the
relatively slow variation in the amplitude between successive
frame and the insensitivity of the human auditory system to
slight inconsistences in the speech amplitude, a straight forward
linear interpolation is given by

S̄i
l (j) = S̆i

0 · j +
(

S̆i+1
l − S̆i

l

)( j

L

)

. (19)

The phase is reconstructed from the decoded pitch values
using a quadratic model which assumes linear pitch variations:

φ̃l
i(j) = lf i−1

0 j +
l(f i

0 − f i−1
0 )

2N
j2 + ϕl, (20)

where f i−1
0 , f i

0 are the pitch frequency values for the (i − 1)th

frame and the ith frame respectively, N is the frame size in sam-
ples, and ϕl is zero for harmonics below a threshold frequency
called voicing and a random variable uniformly distributed in
∈ [−π, π] for harmonics above the voicing frequency. For un-
voiced speech, the magnitude spectrum is sampled at 100 Hz
and a uniformly distributed random phase is applied to each
frequency component.

3. Experimental Results
The performance of the proposed algorithm is measured us-
ing segmental SNR improvement in speech segments, recog-

nition accuracy improvement, subjective study of speech spec-
trograms, and listening test.

3.1. Segmental SNR improvement

To measure the performance of the proposed algorithm in com-
parison to other one-channel noise reduction methods, the seg-
mental signal-to-noise ratio (segSNR) at back-end of DSR is
computed by SNRimprove = segSNRout − segSNRin for
the enhanced speech signals at back-end of DSR. Three types
of background noise - white noise, car noise and factory noise -
were artificially added to different portions of the data at SNR
of 5 dB and -5 dB. Table 1 shows that LSAHT algorithm gives
best results for input SNR 5 dB and -5 dB compared to the re-
sults of PSS, MS, DLSA and NSMR.

Table 1: Comparison of segmental SNR improvement of differ-
ent one-channel noise estimation methods. PSS: Power Spec-
tral Subtraction, MS: spectral subtraction based on minimum
statistics [6], DLSA: log-spectral amplitude speech estimator
by spectral minimum tracking
[7], NSMR: the ratio of the spectral amplitude of the noisy
speech to its minimum [8] and LSAHT: the proposed noise re-
duction method using two stage noise filtering.

Input SNR [dB]
methods white car factory

5 -5 5 -5 5 -5
PSS 4.3 7.3 5.3 8.1 4.1 7.3
MS 7.8 12.3 8.4 13.5 7.4 11.9

DLSA 7.9 12.6 8.6 13.2 7.2 12.1
NSMR 8.9 13.6 9.1 13.3 8.5 12.7
LSAHT 9.1 14.9 11.3 15.7 10.0 14.3

3.2. Recognition accuracy in a DSR system

For evaluation of the improvement of speech recognition with
presented front-end, the Aurora 2 database together with a hy-
brid HMM/MLP ASR system (351 inputs, 420 hidden units and
24 outputs) using forward-backward training algorithm [9] have
been chosen and two training modes are used: training on clean
data and multi-condition training on noisy data. The feature
vector consists of 39 parameters: 13 mel frequency cepstral
coefficients plus delta and acceleration calculations. The mel-
cepstrum coefficients are fed to the MLP (multi-layer percep-
tron) for the non-linear transformation consisted of 9 frames.
The proposed LASHT-filtering front-end was compared to a
NSMR front-end, LSA front-end, and MS front-end. For the
noisy speech results, we averaged the word accuracies between
0 dB and 20 dB SNR. In the table 2, set A, B, and C refer to
matched noise condition, mismatched noise condition, and mis-
matched noise and channel condition, respectively. Table 2 de-
scribes the results of the recognition accuracy.

As seen in the results of table 2, LSAHT provides much
better performance than DLSA front-end, MS front-end, and
NSMR front-end.

3.3. Speech spectrograms and listening test

In order to visualize the effect of the noise reduction algorithm
based on LSAHT, the spectrograms of noisy speech and the re-
constructed speech at back-end server are shown in figure 3.



Table 2: Comparisons of word accuracies (%) between several
front-ends on the Aurora 2 database

Training Mode Set A Set B Set C Overall
Multicondition 86.91 86.61 86.66 86.73

Clean only 72.34 72.70 86.62 77.22
Average 79.63 79.65 86.64 81.97

(a) Word accurancy of DSLA front-end

Training Mode Set A Set B Set C Overall
Multicondition 89.92 88.41 86.86 88.40

Clean only 74.16 73.01 82.13 76.43
Average 82.04 80.01 84.50 82.42

(b) Word accurancy of MS front-end

Training Mode Set A Set B Set C Overall
Multicondition 89.65 88.35 86.88 88.29

Clean only 79.28 78.82 82.13 80.08
Average 84.47 83.59 84.51 84.19

(c) Word accurancy of NSMR front-end

Training Mode Set A Set B Set C Overall
Multicondition 91.45 90.21 89.13 90.26

Clean only 84.32 82.41 82.78 83.17
Average 87.89 86.31 85.96 86.69

(d) Word accurancy of LSAHT front-end

The noisy spectrograms in the upper image of figure 3 was
recorded in a busy street with a SNR of about 5 dB. The spectro-
gram of the reconstructed speech at back-end server is depicted
in the lower parts of figure 3. Dark gray areas correspond to the
speech components while background noise is light gray. The
picture clearly indicates that only speech portions pass the sys-
tem whereas the noise is suppressed. To evaluate the quality of
four (MS,DLSA, NSMR, LSAHT) speech enhancement meth-
ods of DSR back-end speech synthesizers, a subjective Mean-
Opinion-Score (MOS) was performed with noisy speech cor-
rupted by car noise at SNR 10 dB. The noisy uncoded speech
scored 2.16. The MS, the DLSA and, NSMR and LSAHT back-
end synthesizer scored 2.53, 2.43, 2.65 and 2.83 respectively.

 

Figure 3: Spectrograms of noisy speech, reconstructed speech
at back-end of DSR system.
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