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ABSTRACT
Lossless audio coding enables the compression of digital audio data without any loss in quality due to a
perfect reconstruction of the original signal. The compression is achieved by means of decorrelation methods
such as linear prediction. However, since audio signals usually consist of at least two channels, which are
often highly correlated with each other, it is worthwhile to make use of inter-channel correlations as well. In
the current paper it is shown how conventional (mono) prediction can be extended to stereo and multichannel
prediction in order to improve compression efficiency. Results for stereo and multichannel recordings are
given.

INTRODUCTION

Lossless audio coding techniques [1] [2] [3] [4] [5] often
use Linear Predictive Coding (LPC ) to reduce bit rates
compared to PCM. Usually the signals are decorrelated

by linear prediction, and the residuals are finally entropy
coded (Huffman or arithmetic coding).

In conventional LPC systems, individual channels of
stereo or multichannel signals are either coded separately
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(independent coding, mono coding), or a simple difference
coding scheme is applied [3] [4] [5]. Whilst independent
coding only removes intra-channel correlations from the
signals, the bit rates could be further reduced if all chan-
nels were jointly coded (joint stereo coding), thus also
removing inter-channel correlations.

Joint stereo methods are common for lossy audio coding
techniques like MPEG [6] [7] [8]. However, methods such
as M/S-Stereo [9] and Intensity Stereo [10] [11] are barely
suited for lossless coding, since some irrelevancy is always
removed.

The following sections illustrate how the efficiency of
lossless audio coding can be increased by using stereo
and multichannel prediction. A short outline of linear
prediction together with known concepts of exploiting
inter-channel correlations is given. This is then extended
and generalized to cover multichannel prediction. Since
a reasonable choice of predictor orders is crucial, appro-
priate adaptation methods are presented as well. Finally,
compression results for different kinds of audio material
are given, comparing conventional with stereo and mul-
tichannel prediction.

LINEAR PREDICTION

The current sample of a time-discrete signal x(n) can
be approximately predicted from its previous values
x(n− k). The estimate is given by

x̂(n) =

K∑
k=1

ak · x(n− k), (1)

where K is the order of the predictor. If the predicted
values are close to the original samples, the residual

e(n) = x(n)− x̂(n) (2)

has a smaller variance than x(n) itself, hence e(n) can
be encoded more efficiently.

In forward linear prediction, the optimal predictor co-
efficients ak (in terms of a minimized variance of the
residual) are usually estimated by the autocorrelation
method or the covariance method [12]. The autocorrela-
tion method, using the Levinson-Durbin algorithm, has
the advantage of providing a simple means to iteratively
adapt the order of the predictor as well [2].

By increasing the predictor order, the variance of the
prediction error will decrease, leading to a smaller bit
rate for the residual. On the other hand, the bit rate
for the predictor coefficients will rise with the number of
coefficients to be transmitted. Thus, the task is to find
exactly the order which minimizes the total bit rate.

The Levinson-Durbin algorithm recursively determines
all predictors with increasing order. For each order, a
complete set of predictor coefficients is calculated. As a
side effect, the variance σ2

e of the corresponding residual
can be calculated as well, resulting in an estimate of
the expected bit rate for the residual. Together with
the bit rate for the coefficients, the total bit rate can
be determined in each iteration, i.e. for each predictor
order. When the total bit rate no longer decreases, the
order is finally used for prediction.

DIFFERENCE CODING

For stereo signals, it is straightforward to process the two
channels x1(n) (left) and x2(n) (right) independently. A
simple way to exploit dependencies between the channels
is to code x1(n) and the difference

d(n) = x2(n)− x1(n) (3)

instead of x1(n) and x2(n). Switching between x2(n) and
d(n) in particular frames depends on which signal can be
coded more efficiently. Such prediction with switchable
difference coding is beneficial in cases where both chan-
nels are very similar.

STEREO PREDICTION

Another approach to exploit inter-channel correlations
is stereo prediction or stereo LPC [13]. The principle is
shown in Fig. 1. The stereo predictor for each channel
uses not only previous samples from the same channel
but also samples from the other channel.

Prediction of the left channel
For the left channel x1(n) the estimate is given by

x̂1(n) =

Ka∑
k=1

ak · x1(n− k) +

Kb∑
k=1

bk · x2(n− k). (4)

The first sum represents an auto-predictor with order
Ka and coefficients ak, the second sum represents a
cross-predictor with order Kb and coefficients bk. Auto-
predictor and cross-predictor must be optimized simulta-
neously, since they are not independent from each other.

The optimization method is similar to the covariance
method in mono prediction.

The variance of the residual e1(n) = x1(n)− x̂1(n) is

σ2
e1 = E

[
e2
1(n)

]
= E

[
(x1(n)− x̂1(n))2

]
, (5)

which is minimized with respect to the predictor coeffi-
cients ak and bk:

∂σ2
e1

∂ak
≡ 0 ,

∂σ2
e1

∂bk
≡ 0. (6)
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Fig. 1: Principle of stereo prediction

The minimization with respect to ak gives

∂σ2
e1

∂ak
= E [2 · (x1(n)− x̂1(n)) · (−x1(n− k))] = 0 (7)

E [x1(n) · x1(n− k)] = E [x̂1(n) · x1(n− k)] . (8)

By using (4), applying the substitution l = k, and by
introducing a simplified notation for the autocorrelation

rpq(i, j) = rxpxq (i, j) = E [xp(n− i) · xq(n− j)] , (9)

we finally have

r11(0, l) =

Ka∑
k=1

ak · r11(l, k) +

Kb∑
k=1

bk · r12(l, k), (10)

where l = 1 . . . Ka.

The minimization with respect to bk gives

∂σ2
e1

∂bk
= E [2 · (x1(n)− x̂1(n)) · (−x2(n− k))] = 0 (11)

E [x1(n) · x2(n− k)] = E [x̂1(n) · x2(n− k)] . (12)

Similar to (10) we get

r12(0, l) =

Ka∑
k=1

ak · r21(l, k) +

Kb∑
k=1

bk · r22(l, k), (13)

where l = 1 . . . Kb.

The merging of (10) and (13) yields the following set of
equations[

r11

r12

]
=

[
R11 R12

R21 R22

]
·
[

a
b

]
= R1 ·

[
a
b

]
(14)

with the correlation vectors

r11 = [r11(0, 1), r11(0, 2), . . . , r11(0, Ka)]T , (15)

r12 = [r12(0, 1), r12(0, 2), . . . , r12(0, Kb)]
T , (16)

the coefficient vectors

a = [a1, a2, . . . , aKa ]T , (17)

b = [b1, b2, . . . , bKb ]
T , (18)

and the correlation matrices

R11 =

 r11(1, 1) · · · r11(1, Ka)
...

...
r11(Ka, 1) · · · r11(Ka, Ka)

 , (19)

R12 =

 r12(1, 1) · · · r12(1, Kb)
...

...
r12(Ka, 1) · · · r12(Ka, Kb)

 , (20)

R21 =

 r21(1, 1) · · · r21(1, Ka)
...

...
r21(Kb, 1) · · · r21(Kb, Ka)

 , (21)

R22 =

 r22(1, 1) · · · r22(1, Kb)
...

...
r22(Kb, 1) · · · r22(Kb, Kb)

 . (22)

The matrix R1 has the dimension (Ka+Kb)×(Ka+Kb).
It is symmetric because of

r21(i, j) = r12(j, i) (23)

and therefore

R21 = RT
12. (24)

The coefficients ak und bk can be calculated via[
a
b

]
= R−1

1 ·
[

r11

r12

]
. (25)

Due to the symmetry of R1, efficient methods such as
Cholesky decomposition can be used.

Prediction of the right channel
We assume that the left channel x1(n) and the right
channel x2(n) are interleaved, and the samples from each
channel are reconstructed alternately in the decoder. In
this case, also the current sample of x1(n) can be used
to predict x2(n), and the estimate is given by

x̂2(n) =

Kc∑
k=0

ck · x1(n− k) +

Kd∑
k=1

dk · x2(n− k). (26)
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The sums represent the cross-predictor and the auto-
predictor. The first sum starts at k = 0, since the current
sample of the left channel is used.

The variance of the residual e2(n) = x2(n)− x̂2(n) is

σ2
e2 = E

[
e2
2(n)

]
= E

[
(x2(n)− x̂2(n))2

]
, (27)

which is minimized with respect to ck and dk:

∂σ2
e2

∂ck
≡ 0 ,

∂σ2
e2

∂dk
≡ 0. (28)

Minimization is similar to channel x1(n). Finally we get

r21(0, l) =

Kc∑
k=0

ck · r11(l, k) +

Kd∑
k=1

dk · r12(l, k), (29)

where l = 0 . . . Kc, and

r22(0, l) =

Kc∑
k=0

ck · r21(l, k) +

Kd∑
k=1

dk · r22(l, k), (30)

where l = 1 . . . Kd.

We obtain the following set of equations:[
r21

r22

]
=

[
R11 R12

R21 R22

]
·
[

c
d

]
= R2 ·

[
c
d

]
(31)

with

r21 = [r21(0, 0), r21(0, 1), . . . , r21(0, Kc)]
T , (32)

r22 = [r22(0, 1), r22(0, 2), . . . , r22(0, Kd)]T , (33)

and
c = [c0, c1, . . . , cKc ]

T , (34)

d = [d1, d2, . . . , dKd ]T , (35)

as well as

R11 =

 r11(0, 0) · · · r11(0, Kc)
...

...
r11(Kc, 0) · · · r11(Kc, Kc)

 , (36)

R12 =

 r12(0, 1) · · · r12(0, Kd)
...

...
r12(Kc, 1) · · · r12(Kc, Kc)

 , (37)

R21 =

 r21(1, 0) · · · r21(1, Kc)
...

...
r21(Kd, 0) · · · r21(Kd, Kc)

 , (38)

R22 =

 r22(1, 1) · · · r22(1, Kd)
...

...
r22(Kd, 1) · · · r22(Kd, Kd)

 . (39)

The matrix R2 has the dimension (Kc +Kd +1)× (Kc +
Kd + 1). Like R1, it is symmetric, but now all indices
referring to x1(n) start at zero.

The coefficients can ck und dk can be calculated via[
c
d

]
= R−1

2 ·
[

r21

r22

]
. (40)

Thus, (25) und (40) provide all sets of predictor coeffi-
cients for both channels.

Adaptation of stereo predictor orders
A crucial aspect of stereo prediction is the choice of suit-
able predictor orders. The orders of the stereo predictors
in [13] are fixed; an adaptation method is not provided.

Contrary to mono prediction, where the predictor coef-
ficients can be calculated using the Levinson-Durbin al-
gorithm, multichannel prediction requires the inversion
of the multichannel correlation matrix. Hence, the or-
ders of auto- and cross-predictors have to be known in
advance, i.e. prior to applying Cholesky decomposition.

For each channel, two orders have to be specified, but
apparently the best orders for auto-predictor and cross-
predictor are not independent from each other. As-
suming maximum orders Ka = 30 (auto-predictor) and
Kb = 10 (cross-predictor) gives a total of Ka ·Kb = 300
possible combinations. It is obviously not very efficient
to search for the best orders by calculating the resulting
bit rates for all of those combinations.

An adaptation method was developed in order to reduce
the number of reasonable combinations for each channel.
First of all, the optimal order of a mono predictor is de-
termined by using the Levinson-Durbin algorithm. This
order is now used as the order for the auto-predictor.
A cross predictor is then added. The order of the cross
predictor is increased until the bit rate has reached a
minimum value. Thus, the correlation matrix has to be
inverted only for Kb different cross predictors, reducing
the number of matrix inversions by a factor of Ka, or
even more if a larger increment of the cross predictor is
chosen.

Tests have shown that the optimal order of the auto-
predictor is usually somewhat less than the optimal
mono order, since high-order intra-channel prediction be-
comes less important if inter-channel prediction works
well. Furthermore, the optimal order of the cross-
predictor appeared to be reasonably independent from
the auto-predictor’s order. Therefore, after adaptation
of the cross-predictor, the procedure verifies whether a
decrement of the auto-predictor’s order leads to an ad-
ditional bit rate reduction.
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MULTICHANNEL PREDICTION

Stereo prediction can be extended to mutual prediction
of any number of channels xm(n), m = 1 . . . M . For a
particular channel xp(n), the estimate is calculated using
previous samples from all channels:

x̂p(n) =

M∑
m=1

Kpm∑
k=1

apmk · xm(n− k). (41)

Each partial predictor from channel xm(n) may have an
individual order Kpm with predictor coefficients apmk.

Optimization
The predictor coefficients are calculated using the follow-
ing approach. First of all, the variance of the residual

ep(n) = xp(n)− x̂p(n) (42)

is minimized with respect to the predictor coefficients.
For all p = 1 . . . M we set

∂σ2
ep

∂apmk
≡ 0. (43)

By using (42) and (43) together with (9) we finally have

rpq(0, l) =

M∑
m=1

Kpm∑
k=1

apmk · rqm(l, k), (44)

where q = 1 . . . M and l = 1 . . . Kpq. Thus, for each
channel xp(n) there are M sets of Kpq equations. These
equations describe the mutual correlations between all
channels and are used to estimate the predictor coeffi-
cients.

For each channel xp(n) we obtain a set of linear equa-
tions, which can be written as

rp1
rp2

.

.

.
rpq

.

.

.
rpM

 =


R11 R12 · · · R1m · · · R1M

R21 R22 · · · R2m · · · R2M

.

.

.
.
.
.

.

.

.
.
.
.

Rq1 Rq2 · · · Rqm · · · RqM

.

.

.
.
.
.

.

.

.
.
.
.

RM1 RM2 · · · RMm · · · RMM

 ·


ap1
ap2

.

.

.
apm

.

.

.
apM


(45)

or

rp = Rp · ap, (46)

with the correlation vectors

rpq = [rpq(0, 1), rpq(0, 2), . . . , rpq(0, Kpq)]
T , (47)

the coefficient vectors

apm =
[
apm1, apm2, . . . , apmKpm

]T
, (48)

and the correlation matrices

Rqm =

 rqm(1, 1) · · · rqm(1, Kpm)
...

...
rqm(Kpq, 1) · · · rqm(Kpq, Kpm)

 . (49)

Each partial matrix Rqm has a dimension Kpq × Kpm,
depending on the individual predictor orders. The multi-
channel correlation matrix Rp for the prediction of chan-
nel xp(n) from all channels has the dimension Kp ×Kp

with

Kp =

M∑
m=1

Kpm, (50)

which is also the dimension of rp and ap.

Since Rp is symmetric, (46) can be solved efficiently by
the use of Cholesky decomposition, which is equivalent
to

ap = R−1
p · rp, (51)

where ap contains all sets of predictor coefficients apm

for channel xp(n).

Prediction based on current samples
So far only previous samples of all channels have been
used for the prediction of each channel. As shown for
stereo prediction, current samples of other channels can
also be used, if they are available for the decoder prior to
the sample being reconstructed. We assume interleaving
of channels, which means that, for all n, sample xp(n) is
reconstructed before xp+1(n) but after xp−1(n). Hence
(41) has to be slightly modified, and we have

x̂p(n) =

M∑
m=1

Kpm∑
k=1,p≤m
k=0,p>m

apmk · xm(n− k). (52)

In this case, (46) is still valid, but the dimensions of
the (partial) matrices and vectors have increased, since
elements such as rpq(0,0) have to be taken into account.

Thus, the correlation vectors rpq with q < p are

rpq = [rpq(0, 0), rpq(0, 1), rpq(0, 2), ..., rpq(0, Kpq)]
T ,
(53)

the coefficient vectors apm with m < p are

apm =
[
apm0, apm1, apm2, ..., apmKpm

]T
, (54)

and the correlation matrices Rqm with q < p and m < p
are

Rqm =

 rqm(0, 0) · · · rqm(0, Kpm)
...

...
rqm(Kpq, 0) · · · rqm(Kpq, Kpm)

 . (55)
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This means that the dimensions of these matrices are
increased by one due to the new sum indices.

We should also observe those matrices Rqm where q ≥ p
or m ≥ p. For q ≥ p, m < p we have

Rqm =

 rqm(1, 0) · · · rqm(1, Kpm)
...

...
rqm(Kpq, 0) · · · rqm(Kpq, Kpm)

 , (56)

and for q < p, m ≥ p we have

Rqm =

 rqm(0, 1) · · · rqm(0, Kpm)
...

...
rqm(Kpq, 1) · · · rqm(Kpq, Kpm)

 . (57)

In (56) the number of columns is increased, whereas in
(57) the number of rows is increased.

For q ≥ p and m ≥ p, the correlation matrix is still de-
fined by (49), as it is without the use of current samples.

Adaptation of multichannel predictor orders
The adaptation method described for stereo prediction
can be extended to more than two channels, but in such
cases the dependencies between the individual orders
might become much more complicated, depending on the
audio material.

While the orders of all auto-predictors might be deter-
mined using the Levinson-Durbin algorithm, the opti-
mum orders of the cross-predictors strongly depend on
the configuration of the channels and the relations be-
tween them. For example, 5.1-channel surround mate-
rial will normally contain stronger correlations between
the two front channels than between the center and the
rear channels. In such cases, some of the cross-predictors
might become obsolete, reducing the total number of rea-
sonable combinations.

RESULTS

Several audio CDs (16 bit, 44.1 kHz, stereo) have been
coded using stereo prediction together with the described
adaptation method. The maximum orders of the auto-
predictor and the cross-predictor were set at 30 and 10
respectively. According to (26), the right channel was
predicted using the current sample from the left channel.

Results for independent coding and switchable difference
coding, as described in the corresponding section, were
calculated for means of comparison. For both meth-
ods, the order of the predictor was adapted using the
Levinson-Durbin algorithm, but also with a maximum
value of 30.

In all cases, an adaptation block length of 1024 was cho-
sen, and 12 bits per predictor coefficient were used. The
residuals were entropy coded using Rice codes [2] [3].

Table 1 shows the results for independent coding
(Mono), difference coding (Diff ) and stereo coding
(Stereo).

CD Mono Diff Stereo
Berlioz [14] 6.61 6.61 6.57

Carreras [15] 8.12 7.67 7.62
Chapman [16] 9.08 8.58 8.54

Springsteen [17] 9.98 9.93 9.77
U2 [18] 10.05 9.81 9.67

Vega [19] 9.13 8.85 8.64
Vivaldi [20] 7.08 7.06 6.96

Table 1: Coding results (bits per sample) for dif-
ferent audio CDs (averaged over individual tracks,
without silence)

Difference coding achieves savings of up to 0.5 bps, com-
pared with independent coding (Chapman, Carreras).
For this material, stereo coding usually yields a small
additional saving of approximately 0.05 bps on average
and up to 0.1 bps for individual tracks. Similar addi-
tional savings are achieved even on material which can
not be further compressed by difference coding (Berlioz).

For all other material (Springsteen, U2, Vega, Vivaldi),
there are savings of a further 0.1 – 0.2 bps on top of the
savings made by difference coding. For some tracks even
savings of 0.3 bps and above have been measured.

Recording Mono Multichannel
Brubeck [21] 5.80 5.78

Lang [22] 6.25 6.08
Mahler [23] 5.30 5.30
Young [24] 5.35 5.30

Table 2: Coding results (bits per sample) for differ-
ent multichannel recordings (16 bit, 48 kHz, aver-
aged over extracts from all tracks)

Moreover, some multichannel tracks with six channels
(L, R, Ls, Rs, C, LFE), which were recorded from
the analog outputs of a DVD-Audio/SACD player with
16 bit, 48 kHz, have been coded using multichannel pre-
diction according to (52). The maximum order of each
auto-predictor was set at 20, whilst the maximum order
of all cross-predictors was set at 10. In order to keep
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the adaptation of the cross-predictors simple, all orders
were increased simultaneously.

Table 2 shows the results for independent coding and
multichannel coding. For some material (Lang), the sav-
ings are around 0.2 bps on average, and up to 0.3 bps for
particular tracks. The individual results for each chan-
nel indicated that significant correlations exist between
the two front channels, as well as between the two rear
channels. However, compared to stereo material, the
savings for many tracks are rather small. This might be
due to the fact that the recordings have been mixed very
spacially.

CONCLUSION

Lossless audio coding can be improved using adaptive
stereo prediction. Compared to conventional lossless au-
dio coding techniques, considerable savings are achieved
for most stereo signals.

Multichannel prediction yields acceptable savings for
some recordings. The results might be improved by the
use of a more elaborate algorithm for the adaptation of
the predictor orders. Without doubt, multichannel pre-
diction requires further investigation.
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