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Abstract

Recent papers have proposed linear prediction as a useful method for
lossless audio coding. Transform coding, however, hasn’t been investigated
so far, although it seems to be more adapted to the harmonic structure of
most audio signals. In this paper we present first results on lossless
transform coding of CD-quality audio data. One main aspect lies on a
suitable quantization method to obtain perfect reconstruction. Using a
codebook with different entropy codes for the transform coefficients we
achieve bitrates, slightly better then those obtained by the lossless linear
prediction schemes mentioned above.

1   Introduction

Lossless audio coding is a topic of high interest for both professional and customer
applications. Modern lossy coding standards (e.g. ISO MPEG I+II) can achieve large
compression ratios with high subjective quality, however, multiple coding can reveal the
originally masked distortion. Anyway, reproducing critical music items shows that even the
best systems cannot be considered as truly transparent.

Applying entropy coding methods as Huffman, LZW, or arithmetic coding directly to the
audio signal is not very efficient due to the long-term correlations in a 16-bit quantized signal.
Therefore, common data compression tools fail for digitalized music. A preprocessing stage,
which eliminates the statistical dependencies within the signal, leads to an almost uncorrelated
source which is easier to code. While there have been several papers which proposed linear
prediction for this preprocessing stage [1][2][3], the other common tool for decorrelating
signals, signal transforms, hasn’t been investigated yet.

In this paper we discuss the application of discrete orthonormal transforms for lossless audio
coding. At first, a general coding scheme is presented to explain how the transform can be
employed for lossless coding. Then some essential properties concerning the quantization of
the transform coefficients are derived. Finally, we describe a practical coding algorithm and
give some results.
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2   Lossless Transform Coding

In general, the spectrum resulting from a signal transform will be real valued, even for an
integer value signal. For an efficient transmission the coefficients have to be quantized, which
causes inevitable errors in the output signal. Thus, lossless transform coding has to be
considered as a combination of conventional lossy transform coding and additional
transmission of the coding error [4]. Fig. 1 shows the coding scheme. The signal code c is
derived form the input signal x using the lossy compression algorithm. To achieve lossless
compression, the difference e between the input signal x and the reconstructed signal y is
generated in the encoder by local decoding, and both the lossy compressed code c and the
error e are transmitted. In the decoder, the error signal is added to the decoded approximation,
resulting in an output signal which is a perfectly reconstructed version of the input signal.

It is obvious that the error signal strongly depends on the lossy coding algorithm. If the
compression ratio is very high, the error signal will be large and correlated, and the coding
problem passes from the original signal to the error signal. If on the other hand compression is
very small, the error will be zero, but not all of the signals redundancy is removed. Thus, as a
main goal in lossless transform coding we have to find the best compromise between a high
compression ratio in the lossy branch and an easily codeable signal in the correction branch.

We now consider a system as it is shown in Fig. 2. From the quantized input signal x(n) ∈  Z a
set of transform coefficients t(k) is calculated using an arbitrary orthonormal transform A with
block length N. The coefficients are scaled by α and quantized with an unitary quantization
step size ∆ = 1, leading to the integer value spectrum c(k), which - after entropy coding - is
finally transmitted. Using a suitable transform, many of the coefficients are very small or even
zero, and, moreover, they constitute an uncorrelated source. Hence, the integer value spectrum
can be easily entropy coded without taking into account joint probabilities.

As a result of the quantization, which is equivalent to integer truncation, decoding of c(k) does
not guarantee perfect reconstruction, although the integer spectrum itself is coded losslessly.
Therefore, we have to check for possible errors by decoding c(k) in the encoder and to
generate an error correction signal, if necessary.

After descaling with α-1 and applying the inverse transform A-1 = At, where At stands for the
transposed matrix, we obtain the real valued signal y’(n) which is, due to the quantization in
the transform domain, not the original x(n). However, since we consider integer signals, there
is no need to reconstruct the input signal exactly by a real valued signal. If |y’(n) −  x(n)| < 0.5,
integer truncation of y’(n) leads to a reconstructed integer signal y(n) which is identical with
x(n). Otherwise, the input signal is not perfectly reconstructed, i.e. we have an error e(n) ≠ 0.
Of course, e(n) = x(n) −  y(n) is an integer signal, because x(n) and y(n) are integer as well. The
correction signal e(n) has to be transmitted in addition to the integer valued coefficients c(k).

On the decoder side, y(n) is calculated identically by descaling, inverse transformation and
integer trucation. After adding e(n), we get y(n) + e(n) = y(n) + (x(n) −  y(n)) = x(n), which is
the desired original input signal.
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3   Quantization effects

3.1   Theoretical bounds

Obviously, the scalefactor α has great influence not only on the coefficients c(k), but also on
the error signal e(n), and, of course, there is a close connection between the error bit rate Re
and the bit rate Rc for the coefficients. Let R0 denote the coefficient bit rate for the case α = 1,
then Rc rises with ld(α):

( )R Rc = +0 ld α .

To derive a bound for the error bit rate, the process of scaling, integer truncation and descaling
is considered as a linear quantization with step size ∆ = 1 / α, leading to an equally distributed
quantization error q(k) = t(k) −  t’(k) in the transform domain. The first order entropy of the
error q(k) is certainly H1(q) = ld(∆) = − ld(α).

The unquantized error ε(n) = x(n) −  y’(n) in the time domain has the same variance σε² = σq²
due to the energy conservation property of any orthonormal transform. Since for a large
transform order N ε(n) can be seen as a superposition of many equally distributed random
variables, the assumption of a gaussian probability density function (PDF) for ε(n) is justified.
For a large step size ∆, i.e. for α << 1, the quantized error e(n) has also a (discrete) gaussian
PDF with same variance, so its entropy H1(e) is about 0.26 bit higher than H1(q). Hence, for
α << 1, Re is bounded by

( )Re ≥ −0 26. ld α ,

if we assume an uncorrelated error signal. The overall bit rate is made up by R = Rc + Re, and
so the following condition can be derived:

R R≥ +0 0 26. .

Thus, the overall bitrate is at least 0.26 bits higher than the coefficient bit rate for α = 1. These
results can be practically verified, as it is shown in Fig. 3. Generally, the bit rate Re will be
higher than H1(e), but we assume that with a suitable entropy code this bound can be
approximated, so that the sum Rc + H1(e) is a pretty good approximation for the achievable
overall bit rate R. It can be seen that for α < 1 we obtain a nearly constant overall bit rate,
which is slightly higher than R0, whereas for α > 1, the overall bit rate increases with ld(α).

3.2   Error probabilities

We already mentioned that the unquantized error ε(n) in the time domain has a gaussian PDF
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As we consider integer input signals, only |ε(n)| ≥ 0.5 leads to an error e(n) ≠ 0. Therefore,  the
probability for the occurrence of an error in the reconstructed signal y(n) is

{ } ( )p P fe = ≥ = ⋅ ∫ = 





∞
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. d erfc
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The error probability decreases with a growing scalefactor, but according to the above
equation it won’t be zero even for a very large α. This is due to the fact that the assumption of
a gaussian PDF for the error signal is theoretically correct only for N→ ∞ . Actually, if the
scalefactor is very large, the error probability is zero. As an example, it can be shown that for
an N-point DCT and α > N  definitely no error will occur. But, regarding Fig. 3, it is
obvious that such a large value of α is not relevant for practical applications, because it leads
to a very high overall bit rate. Therefore, the above equation will be used to derive the
following results.

The necessary bit rate for the error signal is bounded by its entropy

( ) { } { }( )H e P e k P e k
k

1 = − = ⋅ =
=− ∞

∞

∑ ld .

For α = 1, the error probability is

pe = 



≈erfc .3

2 0 08,

which, on average, leads to an error in one out of twelve reconstructed samples. In this case,
almost all errors are either 1 or − 1. Let us denote pk = P{e = k), then we get the probabilities
p0 = 1 −  pe and p1 = p-1 = pe / 2. Thus, the error entropy is

( ) ( )H e p pk
k

k1
1

1

0 5≈− ⋅ ≈
=−
∑ ld . ,

i.e. we have to spend at least 0.5 bits per input sample for the transmission of the correction
signal e(n). Thus, for α = 1, an overall bit rate R ≈ R0 + 0.5 can be achieved. This is about 0.24
bit above the theoretical bound for α << 1. Anyway, choosing α = 1 has the advantage, that
the error is very easily codeable, because its value is practically restricted to ±1. The entropy
can approximated very closely by practical algorithms, which turned out to be difficult for
smaller values of α. Furthermore, no scaling and descaling has to be done using an
orthonormal transform.
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4   Coding Algorithm

A block diagram of the implemented lossless transform coding system is shown in Fig. 4. The
coder uses an orthonormal DCT with either fixed or variable block length. For the reasons
mentioned above, no additional scaling is done. Each integer value spectrum c(k) is divided
into groups of 32 adjacent coefficients. This partition proved to be most efficient. Since these
groups have an almost laplacian PDF, the codebook consists of several Rice codes. Each
group is coded using the most convenient Rice code, i.e. the code which leads to a minimum
number of bits. A Rice code is in fact a Huffman code for a laplacian PDF, which is
determined by its standard deviation σ. Since Rice codes only exist for discrete values of σ,
only the indices of the chosen codes have to be transmitted.

The inverse transform allows for the location of errors. With pe ≈ 0.08 the average distance
between errors in the reconstructed signal is about twelve samples, i.e. only one out of twelve
samples in e(n) is different from zero. Therefore, it is easier to code the distance than to code
the absolute position within the block. In fact only the deviation from the expected distance is
actually coded, using also different Rice codes. Only a sign bit has to be transmitted in
addition to the distance, because the probability of errors |e(n)| > 1 is almost zero, as already
mentioned before. Exceptions are very rare; they are handled by an escape code.

In fixed block length mode, each block of N input samples is transformed using a DCT with
the same length. In adaptive block length mode, the input signal x(n) is divided into blocks of
2048 samples. Each combination of 2048-, 1024- and 512-point transforms is calculated, and
for this block the most suitable combination is finally selected.

Experiments with different block transforms, e.g. the DFT, DST and the Discrete Hartley
Transform showed the superiority of the DCT. Lapped Transforms, e.g. LOT and MLT [5],
have been tested as well. The marginally better results are in the order of up to 0.1 bits per
sample and are obtained on the expense of a higher complexity and the loss of editabilty of
seperate signal segments. For this reason, we have chosen the DCT for our coder.

The decoder applies the inverse transform after decoding of the coefficients. By adding the
decoded correction signal, the original signal is perfectly reconstructed. The computational
complexity of the decoder is about half of that of the encoder, because only one
transformation has to be performed.

5   Coding results

Results, obtained for several SQAM [6] files, are shown in Fig. 5. Each file corresponds to
about 20 or 30 seconds of monophonic music, with 16-bit linear quantization at a sampling
rate of 44.1 kHz.

In general, a higher block length leads to better coding results due to a better decorrelation of
the source signal, except for signals with very fast varying statistics, pitched signals like
speech or very transient signals like castanets. As a drawback, editability becomes more
difficult for higher block lengths. Although using an adaptive block length does not improve
the results so much compared to the best fixed block length for each individual signal, this
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feature is helpful, since the choice of an appropriate fixed block length for all signals turned
out to be difficult.

In Table 1 the results for lossless transform coding (LTC) with and without adaptive block
length are compared to those obtained by linear predictive coding, namely the SHORTEN
program from T. Robinson [7], used with default parameters.

SHORTEN LTC
(best fixed block length)

LTC
(adaptive block length)

POP (Abba) 7.38 7.20 7.12
CLASSIC (Haydn) 5.95 5.90 5.87
PIANO (Schubert) 4.79 4.96 4.93
SOPRAN 6.22 5.90 5.88
MALE SPEECH 6.33 6.32 6.26
CASTANETS 7.51 7.04 6.90

Table 1: Coding results for different SQAM files (bits per sample).

For most signals, except the piano sample, the results for transform coding are slightly better,
but the average improvement over linear prediction is rather small. However, transform
coding seems to perform better than linear prediction and should be preferred as method for
lossless audio coding.

Precompiled versions of the lossless transform coder are available for Solaris 2.4 and DOS at
the URL http://www-ft.ee.tu-berlin.de/∼ liebchen.

6   Conclusions

In this contribution we have presented a lossless audio coding algorithm, which is based on
orthonormal signal transforms. Previous algorithms for lossless audio coding only used linear
prediction. We have shown how perfect reconstruction of the 16-bit input signal can be
achieved with integer transform coefficients and additional transmission of the error
correction information. For most signals, the bit rates, obtained for entropy coded coefficients
and error correction, are below the results obtained by linear prediction.
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