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Abstract

Recent papers have proposed linear prediction as a useful method for lossless
audio coding. Transform coding, however, has hardly been investigated,
although it seems to be more suited for the harmonic structure of most audio
signals. In this paper we present some results on lossless transform coding of
CD-quality audio data. One main aspect lies on a convenient quantization
method to guarantee perfect reconstruction. We achieve bit rates which are
lower than those obtained by lossless linear prediction schemes.

1 Introduction

Lossless audio coding is a topic of high interest for both professional and
customer applications. Modern lossy coding standards (e.g. ISO MPEG 1 and 2)
can achieve large compression ratios with high subjective quality, however,
multiple coding can revea originally masked distortions. In addition,
reproduction of critical music items shows that even the best systems can not be
considered as truly transparent.

Applying entropy coding methods as Lempel-Ziv, Huffman or arithmetic coding
directly to the audio signal is not very efficient due to the long-time correlations
in a 16-bit 44.1 kHz signal. Therefore, conventional data compression tools fall



in the case of digital audio data. A preprocessing stage, which eliminates the
statistical dependencies within the signal, leads to an almost uncorrelated source
which is easier to code. While there have been many papers which propose
linear prediction for this preprocessing stage [1][2][3], the other usual tool for
decorrelating signals, linear transforms, has hardly been investigated [5][6].

In this paper we discuss the application of discrete orthonormal transforms for
lossless audio coding. First, a general coding scheme is presented to explain
how the transform can be employed for lossless coding. Then some essentia
properties concerning the quantization of the transform coefficients are derived.
Finally, we describe a practical coding algorithm and present some results.

2 Lossless Transform Coding

In general, the spectrum resulting from a signal transform will be real-valued,
even for an integer input signal. For an efficient transmission the coefficients
have to be quantized, which causes inevitable errors in the output signal.
Therefore, lossless transform coding has to be considered as a combination of
conventional lossy transform coding and additional transmission of the coding
error. Fig. 1 shows the coding scheme. The signal code c is derived from the
input signal x using the lossy compression algorithm. To achieve lossless
compression, the difference e between the input signal x and the reconstructed
signal y is generated in the encoder by local decoding, and both the lossy
compressed code ¢ and the error e are transmitted. In the decoder, the error
signal is added to the decoded approximation, resulting in an output signal
which is a perfectly reconstructed version of the input signal.

It is obvious that the error signal depends on the lossy coding algorithm. If the
compression ratio is high, the error signal will be large and correlated, and the
coding problem passes from the original signal to the error signal. On the other



hand, if compression is very small, the error will be zero, but not al of the
signa’s redundancy is removed. Thus, as a main goa in lossless transform
coding, we have to find the best compromise between a high compression ratio
in the lossy branch and an easily codeable signal in the correction branch.

We now consider a system as it is shown in Fig. 2. From the quantized input
signa x(n) 1 Z a set of transform coefficients t(k) is calculated using an
arbitrary orthonormal transform A with block length N. The coefficients are
scaled by a and quantized with an unitary quantization step size D = 1, leading
to an integer-valued spectrum c(k) which - after entropy coding - is finally
transmitted. Using a suitable transform, many of the coefficients are very small
or even zero, and, moreover, they constitute an uncorrelated source. Hence, the
integer-valued spectrum can be easily entropy-coded without taking into
account joint probabilities.

As a result of the quantization, which is equivalent to integer rounding,
decoding of c(k) does not guarantee perfect reconstruction, although the integer
spectrum itself is coded losslessly. Therefore, we have to check for possible
errors by decoding c(k) in the encoder and to generate an error correction signal,
If necessary.

After descaling with a™* and applying the inverse transform A™ = A", where A'
stands for the transposed matrix, we obtain the real-valued signa y’ (n) which,
due to the quantization in the transform domain, is not the origina x(n).
However, since we consider integer signals, there is no need to reconstruct the
input signal exactly by a real-valued signal. If |y'(n) - x(n)| < 0.5, integer
rounding of y'(n) leads to a reconstructed integer signal y(n) which is identical
with x(n). Otherwise, the input signal is not perfectly reconstructed, i.e. we have
an error e(n) 1 0. Of course, e(n) = x(n) - y(n) is an integer signal, because x(n)
and y(n) are integer as well. The error signal e(n) has to be transmitted in
addition to the coefficients c(k).



On the decoder side, y(n) is calculated identically by descaling, inverse
transformation and integer rounding. After adding e(n), we get y(n) + e(n) =
y(n) + (x(n) - y(n)) = x(n), which is the desired original input signal.

3 Quantization effects
3.1 Theoretical bounds

Obvioudly, the scalefactor a has great influence not only on the coefficients
c(k), but also on the error signal e(n). Of course, there is also a relation between
the error bit rate R, and the bit rate R. for the coefficients. Let R, denote the
coefficient bit rate for the casea = 1, then R; riseswith Id(a):

R =R, +ld(a).

To derive a bound for the error bit rate, the process of scaling, integer rounding
and descaling is considered as a linear quantization with a new step size
D=1/a, leading to an equally distributed quantization error q(k) = t(k) - t' (k)
in the transform domain. Thus, the first order entropy of this quantization error
issimply Hy(q) = 1d(D) = - Id(a).

The unquantized error e(n) = x(n) - y'(n) in the time domain has the same
variance s¢° = sq2 due to the energy conservation property of any orthonormal
transform. Since for a large transform length N the error e(n) can be seen as a
superposition of many equally distributed random variables, the assumption of a
gaussian probability density function (PDF) for e(n) isjustified. For alarge step
size D, i.e. for a << 1, the quantized error e(n) has also a (discrete) gaussian
PDF with same variance, so its entropy H;(e) is about 0.5%d(pe/6) » 0.255 bit
higher than H4(q), as shown in [4].



Hence, for a << 1, R is bounded by

R.3 0.255- Id(a),

assuming an uncorrelated error signal. The overall bit rate is R=R.+ R, and
substitution of R. and R. leads to

R3 R, +0.255.

Thus, the overal bit rate is at least 0.255 bit higher than the coefficient bit rate
for a = 1. These results can be practically verified, as it is shown in Fig. 3.
Generaly, the bit rate Re will be higher than Hy(e), but we assume that with a
suitable entropy code this bound can be approximated, so the sum R. + Hi(€e) is
a good approximation for the achievable overall bit rate R. It can be seen that
for a < 1 we obtain a nearly constant overall bit rate, which is slightly higher
than Ry, whereasfor a > 1, the overall bit rate increases with |d(a).

3.2 Error probabilities

We aready mentioned that the unquantized error e(n) in the time domain has a
gaussian PDF

f(e)= ! g 25

B \2ps?

with the variance of the equally distributed quantization error




Since we consider integer input signals, only |e(n)| 3 0.5 leads to an error
e(n) 1 0. Therefore, the probability for the occurrence of an error in the
reconstructed signal y(n) is

p. = P{|g2 05} = 2><i‘)f (e)de:erfc(a %) .

The error probability decreases with a growing scalefactor, but according to the
above equation it will never be zero, not even for avery large a. Thisis due to
the fact that the assumption of a gaussian PDF for the error signa is
theoretically correct only for N® ¥ . Actualy, if the scalefactor is very large, the
error probability approaches zero. But from Fig. 3 it is obvious that a large
value of a is not feasible for practical applications, because it leads to a very
high overall bit rate. Since the overall bit rate typically reaches its minimum for
Id(a) £ - 2 (see Fig. 3), we have chosen a = 0.25.

4 Coding Algorithm

A simplified block diagram of the implemented lossless transform coding
systemis shown in Fig. 4. The coder uses an orthonormal DCT with either fixed
or variable block length. Each integer-valued spectrum c(K) is divided into
groups of 32 adjacent coefficients. This partition proved to be most efficient.
Since these groups have an amost laplacian PDF, the codebook consists of
several Rice codes [1]. Each group is coded using the most convenient Rice
code, i.e. the code which leads to a minimum number of bits. A Rice codeisin
fact a Huffman code for a laplacian PDF, which is determined by its standard
deviation s. Since Rice codes only exist for discrete values of s, only the
indices of the chosen codes have to be transmitted.



The inverse transform allows for the generation of the error signal, which is
encoded using an arithmetic coder with a static model.

In fixed block length mode, each block of N input samples is transformed using
a DCT with the same length. In adaptive block length mode, the input signal
X(n) is divided into blocks of M samples. Each combination of M-, M/2- and
M/4-point transforms is calculated, and for the corresponding block the most
suitable combination is finally selected.

The decoder applies the inverse transform after decoding of the coefficients. By
adding the decoded error signal, the original signal is perfectly reconstructed.
The computational complexity of the decoder is about half of that of the
encoder, because only one transformation has to be performed.

5 Coding results

In general, a higher block length leads to better coding results due to a better
decorrelation of the source signal, except for signals with very fast varying
statistics, pitched signals like speech or very transient signals like castanets. As
a drawback, editing becomes more difficult for higher block lengths. The
adaptive block length mode only slightly improves the results compared to the
best fixed block length for each individual signal. However, this feature is
helpful, since the choice of an appropriate fixed block length sometimes turns
out to be difficult.

In Table 1, the results for our Lossless Transform Audio Compression (LTAC)
algorithm with fixed and adaptive block length are compared to those obtained
by linear predictive coding, namely the popular program "Shorten" [7], used
with default parameters (polynomial prediction) combined with the -c 2 option
for stereo files.



Category Shorten LTAC (fixed) LTAC (adaptive)
Alignment signals 6,29 6,29 6,06
Artificia signals 2,84 2,92 2,60
Single instruments 4,60 4,28 4,15
Voca 5,35 4,91 4,83
Speech 5,45 5,49 5,36
Solo instruments 5,09 4,65 4,52
Vocal & Orchestra 6,73 6,22 6,14
Orchestra 5,33 5,14 5,07
Pop Music 6,37 6,14 6,03
Total 4,98 4,69 4,56

Table 1: Coding results (bits per sample) for the SQAM disc [8]. The categories
are based on the according SQAM sections. Fixed block length: N = 2048,
adaptive block length: M = 4096. LTAC version 1.61.

For most categories, the results of LTAC are significantly better than those of
Shorten. Other lossless audio coders based on linear prediction are able to
achieve 4.83 bps [1] and 4.68 bps [3] for the whole SQAM disc.

6 Conclusions

We have presented a lossless audio coding agorithm which is based on
orthonormal signal transforms, unlike previous algorithms for lossless audio
coding which mainly used linear prediction. We have shown how perfect
reconstruction of the 16-bit input signal can be achieved using integer transform
coefficients and an additional integer error signal. The average bit rates are
below those obtained by common linear prediction schemes.



Precompiled versions of LTAC are available for Windows 95/98/NT, DOS and
Solaris at http://mww-ft.ee.tu-berlin.de/~liebchen/Itac.html.
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Fig. 1. Lossless coding as a combination of lossy coding and additional error

transmission.
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Fig. 2: Block diagram of a lossless transform coding system. Q: Quantization

withstepsizeD= 1.




12

RO+ 0.26

10

4

bits per sample

— T T T Coefficients, Rc —

Error entropy, H1(e)

Sum, Rc + H1(e)

-2,5

-2 -1,5

ld(a)

0,5

Fig. 3: Bit rates depending on the scalefactor. The values have been measured
for a piece of pop music.
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Fig. 4. Simplified block diagram of the implemented lossless transform coding

system. Q: Quantization with stepsizeD=1/a.



