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For the quality evaluation of perceptual audio codecs, appropriate measurement algorithms
are needed, which detect and assess audible artefacts by comparing the output of the codec with
the uncoded reference. A filter bank based perceptual model is presented, which yields better
temporal resolution than FFT-based approaches and thus allows a more precise modelling of
pre- and post-masking and a refined analysis of the envelopes within each filter channel.

0. Introduction

Perceptual audio coding agorithms perform a drastic irrelevancy reduction in order to
achieve ahigh coding gain. Signal comporents that are essumed to be unpercevable ae not
transmitted and the @ding noise is gedrally shaped acwrding to the masking threshold of
the audio signal. Simple quality measures (e.g. signal to ndse ratio, harmonic distortions),
which can na separate these inaudible atefads from audible arors, can nd be used to assess
the performance of such coders. Since subjedive listening tests are very time consuming and
expensive, there is a strong demand for new measurement systems that are cgable to estimate
the percaved audio quality of such perceptual coders. Thaose perceptual measurement methods
deted and assess audible atefads by comparing the output of the cdec with the uncoded
reference Most of the known approaches are based on perceptual models for steady state
signals. In arder to limit computational complexity, they use an FFT to perform the spedral
decompasition d the inpu signals. To adchieve asufficient spedra resolution even in the
lowest auditory filters, block lengths of 1024 @ 2048 samples are used. The resulting time
window of 20to 40ms is dhort enough to model post-masking and temporal integration, bu
coud be too long to modd pre-masking, which in some caes lasts only a few
milliseconds [1]. Filter bank based approades yield much better temporal resolution and are
thus alowing a more predse modelling of pre-masking. The temporal fine structure of the
envelopes at ead auditory filter is preserved and can be used to adhieve alditional
information about the signals, which may contribute to the perceptibility of coding artefacts.

! Both authors work within a research project supported by the Deutsche Telekom AG.
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We ae introdwcing a perceptual modd that is based on a new auditory filter bank. The
centre frequencies of the individual filters are equally distributed over a perceptaul pitch scde.
The top d the filter shape is dightly rounded to ensure that the chosen number of filters
covers the full frequency range withou ripples in the overal frequency resporse.
Alternatively, aflat top a a more rounded top (roex-filter) can be chasen. In order to model
masking threshalds, the filter slopes deaease exporentially over the Bark scde. The stegoness
of the lopes can be chosen either at fixed values or level dependent. The filter bank algorithm
is rather fast as compared to conventional approaches but still much more time @nsuming
than FFT-like methods.

Out of the filtered representations of the test signal and the uncoded reference, numerous
output parameters are cdculated, including a reduced ndse loudress envelope @rrelations
and measures for binaural effeds. Different configurations of the filter bank were tested. We
varied the number of filters (between 50and 180, the filter shapes (rounded exporentials or
triangular), the slopes of the filters (12- 31 dB/Bark, fixed and level dependent) and the
temporal resolution. The results of the model are cmmpared to those of the numerous li stening
tests performed by ITU and MPEG for the evaluation d perceptual codecs. For most of the
avail able databases, the rrelations between model predictions and subjedive scores are very
high.

1. Principles of Perceptual Measurement

Perceptual measurement methods deted and assess audible atefads by comparing the
output of the aodecwith the uncoded reference (Fig. 1). Theinput signals are transformed into
short time spedra, which are fed into a perceptual model (Fig. 2). After weighting the spedral
comporents with the transfer function between ouer ea and inner ea, the time-frequency
representation d the signal is transformed into a time-pitch representation by groupng
neighbouing frequency bands into fixed fradions of criticd bands. The time-pitch
representations are smeaed ou over time and frequency in order to model simultaneous and
temporal masking. There ae two dfferent concepts how to achieve ameasure for audible
distortions from the perceptual model. The most straightforward approadc isto apply the time-
frequency smeaing only to the reference signal and wse it as a masking threshold for the eror
signal (,masked threshold concept”, Fig. 2a). The other approach is to use the complete
perceptual model on bdh the aded signal and the reference signal and compare the internal
representations of both signals (,comparison in the basilar domain®, Fig. 2b). Output
parameters are ather the ratio between error signal and masked threshold [1], the number of
blocks in which audible distortions occurred [1], an estimate for the loudressor annoyance of
the distortiong2] or a probability for the detection of the distortion by a list¢hgb].

1.1. Possible Problems with FFT-Based Models

The Perceptual models described above use an FFT for the time-frequency decompasition.
As the relation between the linea frequency scde resulting from the FFT and the pitch scde
needed for perceptual measurement is highly nortlinea, there is always a trade-off between
temporal and spedral resolution: groupng frequency comporents into equidistant fradions of
criticd bands requires a large number of spedral comporents and thus a rather long time
window. On the other hand, along time window limits the acaracy when modelli ng pre- and
post-masking. Additionally, it will result in a partial loss of information contained in the
temporal envelopes within eat auditory filter. Such information is necessary when modelli ng
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binaural effeds, bu can also be used to model dependencies of masked thresholds from the
type of masker.

2. Description of the New Measurement System

One task of the new modd is to chedk the influence of different spedral and tempora
resolutions on the performance of the model as a predictor of audio quality. This is not
possble with an FFT-based model because any refinement of the temporal resolution would
affect the spectral resolution in the lower frequency bands and vice versa.

The model uses a new approach to estimate the reduction d coding noise by the masking
reference signal. It makes use of the eavelope moduations at ead auditory filter in order to
determine masking threshalds. This allows modelling additivity of masking as well as the
reduced masking effed of pure tones as compared to narrow band ndse. We did arealy
spend some work in modelling binaural effeds but up to now it did na yield significant
improvements in the prediction of available listening test results.

2.1. The Auditory Model

Like other perceptual measurement systems, the model estimates the amourt of audible
distortions by comparing the test signal with an undstorted reference After filtering the input
signals with the transfer function from outer ea to inner ea (Eq. 1, from Terhardt [9]), the
signals are fed into the auditory filter bank.
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2.1.1. TheFilter Bank

The filter bank consists of an arbitrary number of filter pairsthat are equaly distributed over
a perceptual pitch scde. Therefor, no additional scae transformation is required. Similar to
the filter charaderistics of an FFT, ead filter pair consists of one filter representing the red
part of the signal and ore filter representing the imaginary part. In the beginning, the
envelopes of the pulse responses of each filter have a raised cosine shape:

bw: bandwidth

.
hre(t) = cos®(mtlbw ) [eos(2m T, ) i< 1 { centre frequency )
2 [bw
and
him(t) = cos? (Ttlbw (F) @n(2m T, 1) y 1 ?3).
t <

2 [bw
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The ceitre frequencies and hbandwidths of the filters are caosen acwording to an
approximation for the critical band scale given by Schro@l€Eq. 4):

z=T7Bark[&rs nh%% (z: critical band rate / Bark) (4).
50Hz

In order to save mmputational power, the filter implementation is based on a reaursive
algorithm, which is very fast as compared to straightforward FIR implementations and also
somewhat faster than a fast forward convdution. Compared to FFT-like dgorithms or muilti-
rate filter banks, the computational complexity is still very high.

2.1.2. Complex Frequency Smearing

Unlike other models, the frequency-domain smeaing is applied prior to the redificaion o
the filter outputs. The cnvdution with the masking curve is carried ou independently for the
filter channels representing the red part of the signal (Eq. 2) and the channels representing the
imaginary part (Eqg.3). This preserves the time-frequency resolution and, as the spedra
resolution deaeases, the tempora resolution increases. The resulting pulse resporses of the
filters correspond exadly to their new spedral charaderistics. Thus, the frequency smeaing
can be considered as a part of the filter bank.

The stegoness s of the upper slope of the masking curve can ogionaly be dosen level
independent according to Brandenburg eficdl(Eq.5)

_ 24dB
s=- ®)
10Bark +0.2[{z - 7))

or level dependent according to Terhd@jt(Eq.6).

dB L
- o+ -

(L: sound pressure level / dB) (6)
Bark 5Bark

s= min%),—24

The stegpness of the lower slope of the masking curve is st to 31dB/Bark. Optionaly, a
masking curve with a rounded top (,,rounded exporentials‘ acoording to Patterson[7]) can be
redised by applying the same spreading function twice However, this did na yield any
improvement in the prediction of subjectively perceived audio quality.

As the frequency smeaing influences the pulse resporses of the filters, the level dependent
spreading function also results in level dependent pulse resporses. The resporse to a single
pulse with high intensity deaeases much faster than the resporse to a pulse of low intensity
(Fig. 4). This corresponds to the known level dependency of post-masking (e.g. Moore[11]).
In the aurrent mode this effed can na be used to model level dependencies of time domain
masking because the pulse resporses are symmetric and they are much too short to model post
masking. It would be an interesting task for future reseach to implement this model with a
larger number of more narrow banded filters and introduce anonlinea phase to the spreading
functionin order to integrate simultaneous and time domain masking into ore step of auditory
processing.



2.1.3. Adding of Internal Noise

After redifying the filter outputs by computing the squared absolute values, a frequency
dependent offset is added to ead filter output (Eq. 7, from Terhardt [9]). This models the
influence of internal noise that is assumed to be resporsible for the rise of the &asolute
threshold at low frequencies.

fc -0.8
E(fe 1) = E(f,t)+100364@@ﬁ @)

2.1.4. Time-Domain Smearing

In order to model the limited tempora resolution d the human ea, the redified ouput
signals of ead filter are smeaed ou in time. This time-domain smeaing is caried ou in two
steps. In arder to model pre- and past-masking, the signals are averaged over a symmetric
time window. The window has a squared cosine shape, which allows a comparison ketween
this model and FFT-based models when the window length is chosen to 1024 o 2048
samples. We foundan ogimum window length of 400samples or 8 ms. In order to model the
slower deaease of post-masking as compared to pre-masking, a first order low-passfilter is
applied afterwards. The time constants depend on the centre frequencies of the fil@&rs (Eq.

100Hz
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2.1.5. Level and Pattern Adaptation

Linea distortions, which may be caused by an untalanced frequency resporse of the amdec
are lessannoying than additive noise or nortlinea distortions. The same gplies to slow gain
fluctuations and constant level differences. In order to separate this kind o artefads from
other distortions, the model aligns the levels of test and reference signal and compensates for
the frequency resporse of the test objed. Asit is very hard to dedde whether a dhange in the
spedral distribution d a signal is caused by additive noise or by an untalanced frequency
resporse, we had to use some simplified dedsion criteria. The first assumption we made is,
that if the frequency resporse within a short period dffers considerably from the frequency
resporse within a longer period it is very likely that the dhange in the spedral distribution is
caused by additive distortions. The other assumption is, that in the cae of an unkalanced
frequency resporse the level difference between inpu and ouput will only change slowly
between neighbouing filter channels whereas in the case of additive noise the level difference
may change rapidly. These assumptions lea to the following agorithm: in the first step, the
corredion fadors for ead filter channel are determined by smoathing the signal intensiti es at
the filter outputs by first order low-pass filters and cdculating the ratio between test and
reference signal. The time @nstants of these filters are @ou five times larger than the one
used in the time-domain smeaing. In the seoond step, the @rredion fadors are averaged owver
one aiticd bandwidth. Afterwards, ead filter output is weighted with its correspondng
corredion fador. The anourt of slow gain fluctuations and linea distortions is estimated
from the changes of the correction factors over time and frequency.



2.2. Output Values

The time-pitch representations of reference and test signal, which naov can be interpreted as
excitation petterns, are cmpared in several ways in order to estimate the anournt of audible
distortions.

2.2.1. Reduced Noise L oudness

For the estimation d the loudress of the @ding noise in the presence of the masking
reference signal we tried several approadies. For instance we tried the noise loudress as
proposed by Schroeder et al. [8] and the compressed loudress difference @ proposed by
Beaends et al. [2]. Additionally, we modified the loudressformula given by Zwicker [10] in
order to include the reduction d the @ding noise by the masking reference signal. These
modificaions approximate the loudress of the ading noise when no masker is present
(Ere = 0) and depend ontheration ketween coding noise and masker when the @ding noiseis
much smaller than the masker (Eresx = Ere). The modificaion o the Zwicker formula that
yielded the best results is given in Eq.

23 [
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In this equation, Eys represents the internal noise acording to Eq. 7 and [ determines the
reduction d the ading noise by the masking reference signa. The values of Seq and S
replace the masking index used by Zwicker [10]. They are cdculated from the degree of
moduation d the temporal envelope within the correspondng filter channel. For B asimple
exponential is used (E0).

o

2.2.2. Excitation Ratio

A simplified quelity measure that can also be used below the threshold of audibility
(whereas loudress is only defined abowve threshold) is the average ratio between the
excitations of coding noise and reference signal weighted with the maskingsifiep3a 1).

Eit — E
z st ref t&et ref (11)

Eres

2.2.3. Envelope Deviation

The temporal structures of reference and test signal are compared by cdculating a sliding
cross correlation between the temporal envelopes within each auditory filt&2{Eq.
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The time onstant 7 for this diding cross correlation must be large cmpared to the time
constant used in the calculation of the excitation patterns. Currently we use a \280enst

2.2.4. Loudness Pattern Deviation

The excitation petterns are transformed into spedfic loudress patterns using the loudress
formula given by Zwicker [10]. From the aoss correlation between the speafic loudress
patterns of reference and test signal, an estimate for the loudress pattern deviation is
calculated.

2.2.5. Gain Fluctuation

If the level and pettern adaptation is adive and compensates for a changing level difference
between reference and test signal, the average temporal derivation d the wrredion fadorsis
taken as an estimate for the amount of slow gain fluctuations of the test object.

2.2.6. Linear Distortions

If the level and pettern adaptation compensates also for a difference between the spedral
envelopes of reference and test signal, the spread of the @rredion fadors between the filter
channels is taken as an estimate for the anourt of linea distortions introduced by the test
object.

Within the avail able li stening test data, the number of test items, where gain fluctuations and
linea distortions eamed to have asignificant influence on the listening test results, was to
low to establish a mapping between these parameters and the basic audio quality.

2.2.7. Other Parameters

Simplified procedures for the cdculation d binaural masking level differences and sound
localisation have been implemented but up to now yielded no significant improvements.

Besides the reduced ndse loudress we dso tried to cdculate equivalents to ather well-
known psychocaooustic parameters like roughnessand sharpnessof the distortion. Both dd na
seam to improve the performance of the model. Espedally the cdculation d roughnessis a
rather complex procedure and there ae no examples in literature how to cdculate the
roughness of one signal in the presence of a masker. Therefor we ae not able to dedde
whether roughnessdoes not contribute much to the basic audio quality or whether the simple
roughness models we have used were not sufficient for this task. It is also pcssble that
roughness is arealy sufficiently included in the cdculation d the reduced ndse loudress
because bath the masking index sin Eq. 9 and the roughnessare cdculated from the degreeof
modulation within each auditory filter.



3. Results

3.1. Validation of the Model

We thedked the model against the subjedive results of severa li stening tests performed by
ITU and MPEG during the last six yeas. As the relation between the output values of the
mode and the ,,5 Grade Impairment Scde” used in the listening tests is normally nat linea,
we gplied a sigmoidal mapping function to ou model values before cmparing them to the
listening test results (shown as asolid line in Fig. 5to Fig. 8). The standard error s and cross
correlation coefficient r between mapped mode values and listening test results were
cdculated for several sets of listening test data. Espedaly the ,reduced ndse loudress'
showed rather high correlations with the subjedive data. In Fig. 5to Fig. 8 the relation
between the ,,reduced ndse loudress' and the listening test results of the ISO/MPEG 1990
test (headphores only) andthe ITU 1993tests is snown. We plotted the quality differences on
the ,,five grade impairment scade” against a logarithmic representation d the ,,reduced ndse
loudress'. For most of the avail able sets of listening test data, the @rrelations between this
parameter and the subjedive data were mmparable to the best pulished results of other
perceptual models (e.i2], [3]).

3.2. Influence of Temporal and Spectral Resolution

The influence of the spedral and tempora resolution onthe rrelations between model
values and listening test results was snaller than expeded. Increasing the number of filter
channels from currently 80 to 120 @ more did na yield any improvement. Deaeasing the
spedral resolution dovn to 50 o 30 filter channels affeded the rrelations for some sets of
listening test data but in most cases the results did not change significantly.

Varying the length of the symmetric time window used for pre- and past-masking, we found
that the prediction errors increase rapidly when the time window gets dhorter than the
optimum of approximately 8 ms. When the time window beames longer than the optimum,
the prediction errors increase much more slowly. Varying the time wnstant within the first
order low-pass used in the time-domain smeaing, we found similar results. Time cnstants
larger than 20ms yielded a moderate increase of the prediction errors whereas the prediction
errors increased very fast when time constants below 8 ms were used. The dependence of the
time cnstants from the cantre frequencies of the auditory filters played ony a secndary role.
Leaving away this dependency did not have any significant influence on the prediction errors.

3.3. Influence of the Spreading Function

The level dependent spreading function acwrding to (Eg.6) and the level independent
spreading function acwrding to (Eg. 5) yielded abou the same results when correlating the
model output values with the listening test data. Level independent spreading functions with a
simple exporential deaease of the upper slope yielded dlightly lower correlations when the
slope rate was between 10 and 20dB/Bark and rather poa correlations when the slope rate
was snaller than 6 a larger than 24 dB/Bark. Using arouncded exporential shape acording to
Patterson[7] aso yielded significantly poaer correlations as compared to the simple
triangular shape of the spreading function.
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3.4. Performance of Different Output Parameters

The parameter that yielded the highest correlations between model predictions and listening
test data was the reduced ndse loudressacarding to Eq. 9. The noise loudress as propcsed
by Schroeder et al. [8] gives rather high prediction errors in the mntext of our model. For the
compressed loudressdifference & proposed by Beaends et a. [2] we foundabou the same
optimum compressonratio as given in [2] but much larger prediction errors. Thisis probably
due to the different cdculation d the excitation petterns between the models. The excitation
ratio yields aways dightly larger prediction errors as compared to the reduced ndse loudress
but the crrelations are still rather high. Envelope deviation and loudress deviation dd na
yield such high correlations but the results are still comparable to the performance of other
perceptual models.

4. Problems

Even thouwgh in the context of our model Eq. 9 turned ou to be avery good approximation
for the reduction d the noise loudress by the masking reference signal, it is by far not
optimal. Thereis no easy way to handle the cae when the expresson s, [E — S« [E. 0ets

small er than zero. Fortunately, this happens only in very few cases. We ae airrently trying to
solve this problem but up till now all solutions to this problem increased the prediction errors
for the total of the available databases.

The level and pettern adaptation may cause problems becaise under some @ndtions it
might fail to distinguish between additive noise and linea distortions. It can happen that
additive noise is mistaken for alinea distortion and gets partially suppressed. In cases where
linea distortions or gain fluctuations are resporsible for the percaeved audio quality the
current model will get problems because there ae to few examples for this case within the
avail able sets of listening test data. Normally, when linea distortions occurred, the remaining
distortions identified as additive noise were sufficient to explain the listening test results.
Therefor, we @muld na determine amapping between linea distortions and the basic audio
quality.

Some examples for coders where our model could na produce satisfadory predictions were
the NICAM codec in the MPEG 1991 test, the RAI codecin the MPEG 1994 NBC test and
the AWARE codecin the ITU 1992test. In the cae of the NICAM codec we culd aready
identify the reasons why our model had problems. It is mainly becaise of the drawbadks we
mentioned above and we think that these problems will be solved very soon.In the cae of the
RAI codec and the AWARE codec we still do not know the reason for the poor predictions.

5. Future Research

Some improvements of our model can be expeded from implementing refined models for
the binaural processng. Furthermore, we ae till trying to improve the cdculation d the
reduced nase loudresshbecause of the problems mentioned above. A more reliable distinction
between linea distortions and additive noise could be adieved by including the envelope
correlation between reference and test signal in the pattern adaptation algorithm. Some work
will be spent in arder to combine diff erent output parameters into ore quality measure. Up till
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now, we only tried linea or polynomia combinations, which dd na yield significantly better
correlations as compared to the reduced noise loudness alone.
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