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For the quality evaluation of perceptual audio codecs, appropriate measurement algorithms
are needed, which detect and assess audible artefacts by comparing the output of the codec with
the uncoded reference. A filter bank based perceptual model is presented, which yields better
temporal resolution than FFT-based approaches and thus allows a more precise modelling of
pre- and post-masking and a refined analysis of the envelopes within each filter channel.

0. Introduction

Perceptual audio coding algorithms perform a drastic irrelevancy reduction in order to
achieve a high coding gain. Signal components that are assumed to be unperceivable are not
transmitted and the coding noise is spectrally shaped according to the masking threshold of
the audio signal. Simple quality measures (e.g. signal to noise ratio, harmonic distortions),
which can not separate these inaudible artefacts from audible errors, can not be used to assess
the performance of such coders. Since subjective listening tests are very time consuming and
expensive, there is a strong demand for new measurement systems that are capable to estimate
the perceived audio quality of such perceptual coders. Those perceptual measurement methods
detect and assess audible artefacts by comparing the output of the codec with the uncoded
reference. Most of the known approaches are based on perceptual models for steady state
signals. In order to limit computational complexity, they use an FFT to perform the spectral
decomposition of the input signals. To achieve a suff icient spectral resolution even in the
lowest auditory filters, block lengths of 1024 or 2048 samples are used. The resulting time
window of 20 to 40 ms is short enough to model post-masking and temporal integration, but
could be too long to model pre-masking, which in some cases lasts only a few
milli seconds [1]. Filter bank based approaches yield much better temporal resolution and are
thus allowing a more precise modelli ng of pre-masking. The temporal fine structure of the
envelopes at each auditory filter is preserved and can be used to achieve additional
information about the signals, which may contribute to the perceptibility of coding artefacts.
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We are introducing a perceptual model that is based on a new auditory filter bank. The
centre frequencies of the individual filters are equally distributed over a perceptaul pitch scale.
The top of the filter shape is slightly rounded to ensure that the chosen number of f ilters
covers the full frequency range without ripples in the overall frequency response.
Alternatively, a flat top or a more rounded top (roex-filter) can be chosen. In order to model
masking thresholds, the filter slopes decrease exponentially over the Bark scale. The steepness
of the slopes can be chosen either at fixed values or level dependent. The filter bank algorithm
is rather fast as compared to conventional approaches but still much more time consuming
than FFT-like methods.

Out of the filtered representations of the test signal and the uncoded reference, numerous
output parameters are calculated, including a reduced noise loudness, envelope correlations
and measures for binaural effects. Different configurations of the filter bank were tested. We
varied the number of f ilters (between 50 and 180), the filter shapes (rounded exponentials or
triangular), the slopes of the filters (12 - 31 dB/Bark, fixed and level dependent) and the
temporal resolution. The results of the model are compared to those of the numerous listening
tests performed by ITU and MPEG for the evaluation of perceptual codecs. For most of the
available databases, the correlations between model predictions and subjective scores are very
high.

1. Principles of Perceptual Measurement

Perceptual measurement methods detect and assess audible artefacts by comparing the
output of the codec with the uncoded reference (Fig. 1). The input signals are transformed into
short time spectra, which are fed into a perceptual model (Fig. 2). After weighting the spectral
components with the transfer function between outer ear and inner ear, the time-frequency
representation of the signal is transformed into a time-pitch representation by grouping
neighbouring frequency bands into fixed fractions of criti cal bands. The time-pitch
representations are smeared out over time and frequency in order to model simultaneous and
temporal masking. There are two different concepts how to achieve a measure for audible
distortions from the perceptual model. The most straightforward approach is to apply the time-
frequency smearing only to the reference signal and use it as a masking threshold for the error
signal („masked threshold concept“ , Fig. 2a). The other approach is to use the complete
perceptual model on both the coded signal and the reference signal and compare the internal
representations of both signals („comparison in the basilar domain“ , Fig. 2b). Output
parameters are either the ratio between error signal and masked threshold [1], the number of
blocks in which audible distortions occurred [1], an estimate for the loudness or annoyance of
the distortions [2] or a probability for the detection of the distortion by a listener [4][5].

1.1. Possible Problems with FFT-Based Models
The Perceptual models described above use an FFT for the time-frequency decomposition.

As the relation between the linear frequency scale resulting from the FFT and the pitch scale
needed for perceptual measurement is highly non-linear, there is always a trade-off between
temporal and spectral resolution: grouping frequency components into equidistant fractions of
criti cal bands requires a large number of spectral components and thus a rather long time
window. On the other hand, a long time window limits the accuracy when modelli ng pre- and
post-masking. Additionally, it will result in a partial loss of information contained in the
temporal envelopes within each auditory filter. Such information is necessary when modelli ng
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binaural effects, but can also be used to model dependencies of masked thresholds from the
type of masker.

 2. Description of the New Measurement System

One task of the new model is to check the influence of different spectral and temporal
resolutions on the performance of the model as a predictor of audio quality. This is not
possible with an FFT-based model because any refinement of the temporal resolution would
affect the spectral resolution in the lower frequency bands and vice versa.

The model uses a new approach to estimate the reduction of coding noise by the masking
reference signal. It makes use of the envelope modulations at each auditory filter in order to
determine masking thresholds. This allows modelli ng additivity of masking as well as the
reduced masking effect of pure tones as compared to narrow band noise. We did already
spend some work in modelli ng binaural effects but up to now it did not yield significant
improvements in the prediction of available listening test results.

2.1. The Auditory Model
Like other perceptual measurement systems, the model estimates the amount of audible

distortions by comparing the test signal with an undistorted reference. After filtering the input
signals with the transfer function from outer ear to inner ear (Eq. 1, from Terhardt [9]), the
signals are fed into the auditory filter bank.
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2.1.1. The Filter Bank
The filter bank consists of an arbitrary number of f ilter pairs that are equally distributed over

a perceptual pitch scale. Therefor, no additional scale transformation is required. Similar to
the filter characteristics of an FFT, each filter pair consists of one filter representing the real
part of the signal and one filter representing the imaginary part. In the beginning, the
envelopes of the pulse responses of each filter have a raised cosine shape:
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The centre frequencies and bandwidths of the filters are chosen according to an
approximation for the critical band scale given by Schroeder [8] (Eq. 4):
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In order to save computational power, the filter implementation is based on a recursive
algorithm, which is very fast as compared to straightforward FIR implementations and also
somewhat faster than a fast forward convolution. Compared to FFT-like algorithms or multi -
rate filter banks, the computational complexity is still very high.

2.1.2. Complex Frequency Smearing
Unlike other models, the frequency-domain smearing is applied prior to the rectification of

the filter outputs. The convolution with the masking curve is carried out independently for the
filter channels representing the real part of the signal (Eq. 2) and the channels representing the
imaginary part (Eq. 3). This preserves the time-frequency resolution and, as the spectral
resolution decreases, the temporal resolution increases. The resulting pulse responses of the
filters correspond exactly to their new spectral characteristics. Thus, the frequency smearing
can be considered as a part of the filter bank.

The steepness s of the upper slope of the masking curve can optionally be chosen level
independent according to Brandenburg et al. [6] (Eq. 5)
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or level dependent according to Terhardt [9] (Eq. 6).
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The steepness of the lower slope of the masking curve is set to 31 dB/Bark. Optionally, a
masking curve with a rounded top („ rounded exponentials“ according to Patterson [7]) can be
realised by applying the same spreading function twice. However, this did not yield any
improvement in the prediction of subjectively perceived audio quality.

As the frequency smearing influences the pulse responses of the filters, the level dependent
spreading function also results in level dependent pulse responses. The response to a single
pulse with high intensity decreases much faster than the response to a pulse of low intensity
(Fig. 4). This corresponds to the known level dependency of post-masking (e.g. Moore [11]).
In the current model this effect can not be used to model level dependencies of time domain
masking because the pulse responses are symmetric and they are much too short to model post
masking. It would be an interesting task for future research to implement this model with a
larger number of more narrow banded filters and introduce a non-linear phase to the spreading
function in order to integrate simultaneous and time domain masking into one step of auditory
processing.
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2.1.3. Adding of Internal Noise

After rectifying the filter outputs by computing the squared absolute values, a frequency
dependent offset is added to each filter output (Eq. 7, from Terhardt [9]). This models the
influence of internal noise that is assumed to be responsible for the rise of the absolute
threshold at low frequencies.
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2.1.4. Time-Domain Smearing
In order to model the limited temporal resolution of the human ear, the rectified output

signals of each filter are smeared out in time. This time-domain smearing is carried out in two
steps. In order to model pre- and post-masking, the signals are averaged over a symmetric
time window. The window has a squared cosine shape, which allows a comparison between
this model and FFT-based models when the window length is chosen to 1024 or 2048
samples. We found an optimum window length of 400 samples or 8 ms. In order to model the
slower decrease of post-masking as compared to pre-masking, a first order low-pass filter is
applied afterwards. The time constants depend on the centre frequencies of the filters (Eq. 8).
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2.1.5. Level and Pattern Adaptation
Linear distortions, which may be caused by an unbalanced frequency response of the codec,

are less annoying than additive noise or non-linear distortions. The same applies to slow gain
fluctuations and constant level differences. In order to separate this kind of artefacts from
other distortions, the model aligns the levels of test and reference signal and compensates for
the frequency response of the test object. As it is very hard to decide whether a change in the
spectral distribution of a signal is caused by additive noise or by an unbalanced frequency
response, we had to use some simpli fied decision criteria. The first assumption we made is,
that if the frequency response within a short period differs considerably from the frequency
response within a longer period it is very likely that the change in the spectral distribution is
caused by additive distortions. The other assumption is, that in the case of an unbalanced
frequency response the level difference between input and output will only change slowly
between neighbouring filter channels whereas in the case of additive noise the level difference
may change rapidly. These assumptions lead to the following algorithm: in the first step, the
correction factors for each filter channel are determined by smoothing the signal intensities at
the filter outputs by first order low-pass filters and calculating the ratio between test and
reference signal. The time constants of these filters are about five times larger than the one
used in the time-domain smearing. In the second step, the correction factors are averaged over
one criti cal bandwidth. Afterwards, each filter output is weighted with its corresponding
correction factor. The amount of slow gain fluctuations and linear distortions is estimated
from the changes of the correction factors over time and frequency.
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2.2. Output Values
The time-pitch representations of reference and test signal, which now can be interpreted as

excitation patterns, are compared in several ways in order to estimate the amount of audible
distortions.

2.2.1. Reduced Noise Loudness
For the estimation of the loudness of the coding noise in the presence of the masking

reference signal we tried several approaches. For instance, we tried the noise loudness as
proposed by Schroeder et al. [8] and the compressed loudness difference as proposed by
Beerends et al. [2]. Additionally, we modified the loudness formula given by Zwicker [10] in
order to include the reduction of the coding noise by the masking reference signal. These
modifications approximate the loudness of the coding noise when no masker is present
(ERef = 0) and depend on the ration between coding noise and masker when the coding noise is
much smaller than the masker (ETest ≈ ERef). The modification of the Zwicker formula that
yielded the best results is given in Eq. 9.
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In this equation, EHS represents the internal noise according to Eq. 7 and  ββ  determines the
reduction of the coding noise by the masking reference signal. The values of stest and sref

replace the masking index used by Zwicker [10]. They are calculated from the degree of
modulation of the temporal envelope within the corresponding filter channel. For  ββ  a simple
exponential is used (Eq. 10).
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2.2.2. Excitation Ratio
A simpli fied quality measure that can also be used below the threshold of audibilit y

(whereas loudness is only defined above threshold) is the average ratio between the
excitations of coding noise and reference signal weighted with the masking index s (Eq. 11).
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2.2.3. Envelope Deviation
The temporal structures of reference and test signal are compared by calculating a sliding

cross correlation between the temporal envelopes within each auditory filter (Eq. 12).
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The time constant ττ for this sliding cross correlation must be large compared to the time
constant used in the calculation of the excitation patterns. Currently we use a value of 250 ms.

2.2.4. Loudness Pattern Deviation
The excitation patterns are transformed into specific loudness patterns using the loudness

formula given by Zwicker [10]. From the cross correlation between the specific loudness
patterns of reference and test signal, an estimate for the loudness pattern deviation is
calculated.

2.2.5. Gain Fluctuation
If the level and pattern adaptation is active and compensates for a changing level difference

between reference and test signal, the average temporal derivation of the correction factors is
taken as an estimate for the amount of slow gain fluctuations of the test object.

2.2.6. Linear Distortions
If the level and pattern adaptation compensates also for a difference between the spectral

envelopes of reference and test signal, the spread of the correction factors between the filter
channels is taken as an estimate for the amount of linear distortions introduced by the test
object.

Within the available listening test data, the number of test items, where gain fluctuations and
linear distortions seemed to have a significant influence on the listening test results, was to
low to establish a mapping between these parameters and the basic audio quality.

2.2.7. Other Parameters
Simpli fied procedures for the calculation of binaural masking level differences and sound

localisation have been implemented but up to now yielded no significant improvements.

Besides the reduced noise loudness we also tried to calculate equivalents to other well -
known psychoacoustic parameters like roughness and sharpness of the distortion. Both did not
seem to improve the performance of the model. Especially the calculation of roughness is a
rather complex procedure and there are no examples in literature how to calculate the
roughness of one signal in the presence of a masker. Therefor we are not able to decide
whether roughness does not contribute much to the basic audio quality or whether the simple
roughness models we have used were not suff icient for this task. It is also possible that
roughness is already suff iciently included in the calculation of the reduced noise loudness
because both the masking index s in Eq. 9 and the roughness are calculated from the degree of
modulation within each auditory filter.
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3. Results

3.1. Validation of the Model
We checked the model against the subjective results of several li stening tests performed by

ITU and MPEG during the last six years. As the relation between the output values of the
model and the „5 Grade Impairment Scale“ used in the listening tests is normally not linear,
we applied a sigmoidal mapping function to our model values before comparing them to the
listening test results (shown as a solid line in Fig. 5 to Fig. 8). The standard error s and cross
correlation coeff icient r between mapped model values and listening test results were
calculated for several sets of li stening test data. Especially the „ reduced noise loudness“
showed rather high correlations with the subjective data. In Fig. 5 to Fig. 8 the relation
between the „ reduced noise loudness“ and the listening test results of the ISO/MPEG 1990
test (headphones only) and the ITU 1993 tests is shown. We plotted the quality differences on
the „ five grade impairment scale“ against a logarithmic representation of the „ reduced noise
loudness“ . For most of the available sets of li stening test data, the correlations between this
parameter and the subjective data were comparable to the best published results of other
perceptual models (e.g. [2], [3]).

3.2. Influence of Temporal and Spectral Resolution
The influence of the spectral and temporal resolution on the correlations between model

values and listening test results was smaller than expected. Increasing the number of f ilter
channels from currently 80 to 120 or more did not yield any improvement. Decreasing the
spectral resolution down to 50 or 30 filter channels affected the correlations for some sets of
listening test data but in most cases the results did not change significantly.

Varying the length of the symmetric time window used for pre- and post-masking, we found
that the prediction errors increase rapidly when the time window gets shorter than the
optimum of approximately 8 ms. When the time window becomes longer than the optimum,
the prediction errors increase much more slowly. Varying the time constant within the first
order low-pass used in the time-domain smearing, we found similar results. Time constants
larger than 20 ms yielded a moderate increase of the prediction errors whereas the prediction
errors increased very fast when time constants below 8 ms were used. The dependence of the
time constants from the centre frequencies of the auditory filters played only a secondary role.
Leaving away this dependency did not have any significant influence on the prediction errors.

3.3. Influence of the Spreading Function
The level dependent spreading function according to (Eq. 6) and the level independent

spreading function according to (Eq. 5) yielded about the same results when correlating the
model output values with the listening test data. Level independent spreading functions with a
simple exponential decrease of the upper slope yielded slightly lower correlations when the
slope rate was between 10 and 20 dB/Bark and rather poor correlations when the slope rate
was smaller than 6 or larger than 24 dB/Bark. Using a rounded exponential shape according to
Patterson [7] also yielded significantly poorer correlations as compared to the simple
triangular shape of the spreading function.
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3.4. Performance of Different Output Parameters
The parameter that yielded the highest correlations between model predictions and listening

test data was the reduced noise loudness according to Eq. 9. The noise loudness as proposed
by Schroeder et al. [8] gives rather high prediction errors in the context of our model. For the
compressed loudness difference as proposed by Beerends et al. [2] we found about the same
optimum compression ratio as given in [2] but much larger prediction errors. This is probably
due to the different calculation of the excitation patterns between the models. The excitation
ratio yields always slightly larger prediction errors as compared to the reduced noise loudness
but the correlations are still rather high. Envelope deviation and loudness deviation did not
yield such high correlations but the results are still comparable to the performance of other
perceptual models.

4. Problems

Even though in the context of our model Eq. 9 turned out to be a very good approximation
for the reduction of the noise loudness by the masking reference signal, it is by far not
optimal. There is no easy way to handle the case when the expression s E s Etest test ref ref⋅ − ⋅  gets

smaller than zero. Fortunately, this happens only in very few cases. We are currently trying to
solve this problem but up till now all solutions to this problem increased the prediction errors
for the total of the available databases.

The level and pattern adaptation may cause problems because under some conditions it
might fail to distinguish between additive noise and linear distortions. It can happen that
additive noise is mistaken for a linear distortion and gets partially suppressed. In cases where
linear distortions or gain fluctuations are responsible for the perceived audio quality the
current model will get problems because there are to few examples for this case within the
available sets of li stening test data. Normally, when linear distortions occurred, the remaining
distortions identified as additive noise were suff icient to explain the listening test results.
Therefor, we could not determine a mapping between linear distortions and the basic audio
quality.

Some examples for coders where our model could not produce satisfactory predictions were
the NICAM codec in the MPEG 1991 test, the RAI codec in the MPEG 1994 NBC test and
the AWARE codec in the ITU 1992 test. In the case of the NICAM codec we could already
identify the reasons why our model had problems. It is mainly because of the drawbacks we
mentioned above and we think that these problems will be solved very soon. In the case of the
RAI codec and the AWARE codec we still do not know the reason for the poor predictions.

5. Future Research

Some improvements of our model can be expected from implementing refined models for
the binaural processing. Furthermore, we are still t rying to improve the calculation of the
reduced noise loudness because of the problems mentioned above. A more reliable distinction
between linear distortions and additive noise could be achieved by including the envelope
correlation between reference and test signal in the pattern adaptation algorithm. Some work
will be spent in order to combine different output parameters into one quality measure. Up till
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now, we only tried linear or polynomial combinations, which did not yield significantly better
correlations as compared to the reduced noise loudness alone.
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7. Figures
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Fig. 4: Pulse responses at one filter channel prior (a) and after (b, c) the complex spreading operation for two
pulses of different energie (b: low energie, c: high energie) . The shape of the pulse response after the

complex spreading operation corresponds nicely to the post-masking curves shown in [10].
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Fig. 8: Results for all three tests put together


