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Abstract Diffusion is an efficient localized image reg-
ularization method based on the analysis of image struc-
tures such as direction and magnitude. However, the lo-
calization at weak features which have small brightness
variations is fundamentally difficult. This often results in
removal of weak features. We address this problem with
perceptual maximum variation modeling. In our method,
diffusion flow of color images is performed by evaluating
the perceptual maximum variations which combine the
small differences in both brightness and chromaticity,
using a least squares optimization with principal com-
ponent analysis (PCA). A consistency constraint is em-
ployed to avoid influence from global color distributions
and to enhance homogeneous color regions. We apply
our approach for de-noising of color images and obtain
excellent improvements over existing methods.

1 Introduction

Removal of noise in color images is an important task for
many applications. Here it is of vital importance to re-
duce noise while preserving important image structures
such as strong and weak edges and fine texture details.
Scalar diffusion theory has been utilized for this purpose
in the past [1]. The method employs regularization of im-
ages usually using a fluid mechanic basis which equili-
brates spatial variations in concentration. However, reg-
ularization often results in over-diffusion i.e. delocalized
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Fig. 1 (a) colorful bird image and the subtleties of correla-
tion between (b) red, (c) green, and (d) blue channels.

flow and thus in blur of small brightness variations in im-
ages. If the important edges are formed by small bright-
ness variations, over-diffusion causes blurring problem
that removes the edges. Recent diffusion methods han-
dles the problem using tensor-valued i.e. vector diffusiv-
ity function [6] which can be adapted to local edge orien-
tation. The function allows smoothing along the edges,
but not perpendicular to it. However, the method is just
suitable for a grey image or one channel processing. An
independent process of each color channels results color
distortions due to subtleties of color correlation between
the channels [7, 8]. Although an edge between head and
body of a colorful bird in Figure 1 can be clearly distin-
guished in the red channel, diffusion error may occur in
the other channels.

Some studies of color filtering deal with the channel
mixture problem using color vectorial methods - thus
extending the well established scalar diffusion. An ef-
ficient method is to extend the medians of the scalar
space to the color vectorial data [2 - 5]. Vector me-
dian filters (VMF) [2, 3] are obtained by considering
L1, L2 norms for ordering image vectors according to
their relative magnitude differences. Other method con-
sider vector directional filters (VDF) [4, 5]. These works
are related with heuristic approach which makes ho-
mogeneity directed correlation among the color chan-
nels. However, the localization performance on ambigu-
ous edges with weak variations is still unstable. Human
visual system perceives small brightness variations us-
ing a knowledge-based analogy from color components.
Perceptually motivated color spaces are used to evaluate
mutual coherency and geometrical continuation [8]. Al-
though these methods achieve good results for preserving
colors, they do not preserve small brightness variations
in the color images.

In this paper we introduce perceptual maximum varia-
tion modeling which is optimized to combine the small
differences in both brightness and chromaticity. A consis-
tency constraint for the modeling is considered to avoid
influence from global color distributions and to enhance



homogeneous color regions. We apply our approach for
de-noising of color images with anisotropic diffusivity
function.

2 Robust Color Diffusion using Perceptual
Maximum Variation Modeling

The basic idea is based on the fact that the human vi-
sual system detects the edges of color regions by con-
sidering chromaticity and brightness simultaneously. If
the brightness difference of neighboring regions is very
small, our eyes can detect the important edges using
chromaticity difference between regions. We estimate a
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Fig. 2 (a) CIE-L*a"b" color space (b) original color image
(¢) L™ (d) a™ and (e) b" of the color image, (f) p-space from
our modeling (here, the scale of p-space is 255 for visualiza-
tion purpose).
consistency constraint
: diffusion flow

weak -edge edge in maximum variation
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Fig. 3 (a) localization error of diffusion on a weak edge (i.e.
over-diffusion artifacts) (b) our method.

diffusion flow

Fig. 4 (a) Perona and Malik color diffusion for 10% Gaus-
sian noise image, PSNR=26.199dB (b) Proposed method for
10% Gaussian noise image, PSNR=33.518dB (c) details with
over-diffusion on weak edges (left: 4a, right: 4b).
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higher dimensional perceptual gp-space (note that the
scale of p-space can be scaled over the size of image col-
ors) projecting the maximum variations of both bright-
ness and chromaticity. First, a color image is converted
into a perceptually uniform color space of CIE-L*a*b*,
as depicted in Figure 2. The small brightness variations
on a color edge are selectively modulated in luminance
axis to preserve differences of chromaticity. PCA is used
to find a set of orthogonal vectors lying along the direc-
tion of the maximal variation. The modulated variations
can be projected into a perceptual dimension which has
high dynamic range. During the optimization, the consis-
tency constraint is considered to enhance the localization
of homogeneity between color regions by removing the
diversity of global color distribution from the image. Ac-
cordingly, color diffusion evaluating the maximum vari-
ations allows excellent localization performance. This is
illustrated in Figure 3. Figure 4 shows that in this way
ill-posed over-diffusion of traditional diffusion methods
can be overcome when the color diffusion is performed
by evaluating variations of p-space.

2.1 Perceptual maximum variation modeling

Perceptual difference between two neighboring color pels
in CIE-L*a*b* can be simply measured by the Euclidean

distance between the two vectorial values ¢, (x) = [Ly, aj,

by and c,(x) = [Ly,ay,by] with perceptual color metric
dcp, in (1). x denotes a pel x = (x,y) on a CIE-L*a*b*

color domain I(x) : RY = {c(L;, ap,b%) > 0}.

dch = (L — L3)* + (ap —az)® + (b —b3)° (1)

Colors with the same dcj,, are perceptually equal. The
brightness w(x) in luminance domain L* and the chro-
maticity £(x) includes a* and b* respectively. It repre-
sents the length of the color vectors and the normalized
color components.

w(x) = Z [1n ()] and £(x) = 1(x)/w(x) (2)

We estimate visually maximum variations using the per-
ceptual difference which combines w(x) and £(x) in color
metric dcp,. A linear transform which projects original
brightness in the luminance L; and L} into perceptual
intensity g, and g, (which remains proportional to the
perceptual color difference) is obtained by minimizing
the following quadratic function. The constant K is cho-
sen for the proportional weight e.g. when K =1, L} and
L are equally modulated with the perceptual differ-
ences.

n—2 n—1

0o pa ) =D > (Iop— pal/dcsy — K)* (3)

p=0 g=p+1

pp and @, generally have higher dynamic range than

Ly and Ly , since they include total difference of both
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brightness and chromaticity. p-space has maximum vari-
ations in human visual range. Using PCA equation (3)
the entire distribution of color values can be projected
onto the primary L*-axis of the ellipsoid using a linear
transform. The principal components are the eigenvec-
tors of its covariance matrices. By calculating the co-
variance matrix with largest eigenvalue the perceptual
maximum variation can be estimated.

2.2 Consistency constraint

PCA performs very well in aligning the colors in a region
which have locally-compact or globally-smooth color dis-
tributions. If we deal with whole images in a noisy condi-
tion, the color whole image distribution may not be suit-
able to fit local properties. Equation (3) is convex, but
may converge into multiple global minima. We solve the
problem by considering a consistency constraint. First,
the chromaticity difference between two color pels is de-
fined by a equation similar to (1) as

86pa = \/ (a3 — a3)2 + (b — by)? (4)

As shown in Figure 2d and Figure 2e, the chromatic-
ity domain can be used as a good consistency measure
because it inherently has piecewise smoothness over the
image - while the brightness in L* is affected by satu-
ration, lightness e.g. shadow, reflection and noise, etc.
The consistency measure is decreased when the spatial
distance to the pel under consideration increases due to
the coherency of objects. In this paper, consistency A is
defined as a similarity group based on probability, using
the chromaticity difference £,, and spatial distance d,q
with proportional constant k. ¢ and ~y4 are empirically
determined in (5).

Ao, pyg (X)) = Z k- exp(—=(68pq/ve + dpg/va)) (5)

2.8 Robust color diffusion with perceptual mazximum
variation modeling

If a noisy color image is considered as a noisy color vector
space I(x):R? — R™, the space can be separated into
brightness w(x) : R? — R* and chromaticity £(x) : R? —
S"~1. We deal with the brightness and chromaticity
components separately for diffusion. First, the diffusion
of brightness is calculated by tensor-valued diffusivity
function

Ow(x) — div(D - Vw(x)) =0 (6)
D denotes a positive definite symmetric matrix called
”diffusion tensor” and 9; is the derivation with respect
to the time. Instead of evaluating the gradient of initial
brightness, we propose to obtain a perceptual diffusion
flow tensor using the Cartesian product of the gradient
vector (Qg, Q)T [6] in the p-space resulting from (3)

with itself. While the small variations Vw(x) of bright-
ness are well filtered, important structure in the varia-
tions is still preserved by localized diffusion flow in the
perceptual maximum.

oo (G0%) o

Qz = p(x) * Gz o and Qy = p(x) * Gy, are obtained by
x- and y-directional derivatives of 2D Gaussian kernel
G(x) = (2mo?)exp (—(2? + y?)/20?) with a standard
deviation o. With a scale ¢ of successively smoothed
concentrations, its eigenvectors describe the direction of
highest and lowest contrast. These contrasts are given
by corresponding two positive eigenvalues. Anisotropic
diffusion of brightness can be considered by an edge-
stopping weighting function (e.g. Perona-Malik g-weight,
and Tukey bi-weight, etc. in [1]) of the eigenvalues.

Let the chromaticity &;(x):R? — R describes each of the
n-components of £(x). The gradients of the components
V& = (0¢:/0z)x + (0¢;/0y)y can be defined with unit vec-
tors x and y which have the values of the component
gradients ||V&|| = ((0&/0x)? + (8§i/8y)2)1/2 in the z-
and y-directions. We solve a constrained minimization
problem called "harmonic map” [7] with a constraint
Vel =1 as

O&i — div(||VE|PT - V&) + & |IVEIP =0, 1<i<n (8)

Here, [|VE|| = S0, ((9€:/0x + 06 /dy)"/? is the abso-
lute value of the image gradient, i.e. total component
gradient. When p = 2, (8) equals to the isotropic diffu-
sion 0; — A& + & || VE||” = 0, which substitutes the di-
vergence term in (8) into a component Laplacian AE; =
(82&/(9$2 + azgi/af) 12, Anisotropic diffusion in chro-
maticity results in the range of 1 < ¢ < 2 given in the
weighting function.

3 Experimental Results

In our experiments we investigated the efficiency of our
proposed method on zero-mean Gaussian color noise and
zero-mean impulsive color noise. Impulse color noise had
random amplitude and spectral content with a large per-
turbation of the color values. Figure 5 shows results
of our method using Balloons and Parrot images with
10% Gaussian color noise for each color channel in orig-
inal color image. Perceptual modeling estimates maxi-
mum variations in color consistency to enhance conver-
gence. Then, diffusion process is less sensitive to mo-
mentary variations e.g. noise but more sensitive to dis-
continous variations e.g. edges between two regions. In
the geometric continuation, robust de-noising is achieved
even in image regions containing weak edges and small
brightness variations by iterative diffusion with a scale.
PSNR[dB] is evaluated for color in three channels as

10l0gy """ Z;V; (255 - 3N\ N2/ |13, §) — I' (i, 5)|[%) (9)



Table 1 Comparison using Lena image with 4, 10% color
impulsive noise

Algorithms 4% 10%

None 17.983 11.702
Arithmetic mean filter 3x3(AMF) 25.971 14.802
Perona and Malik color(PM) [1] 28.146  17.508
Vector directional filter(VDF) [2] 30.466 17.716
Vector median filter(VMF) [4] 31.427  22.342
Fuzzy vector directional filter(FVDF) [3]  30.827  20.089
Modified vector median filter(MVMF) [5] 38.446 26.411
Proposed method 39.841 27.834

Fig. 5 (a) Balloons image with 10% Gaussian noise (b) de-
noising result of 5a using our method, PSNR=33.518dB (c)
error image of 5a (d) error image of 5b (e) Parrot image with
10% Gaussian noise (f) de-noising from 5e, PSNR=38.146d B.

(g)

Fig. 6 De-noising effect of Table 1 - (a) original and dis-
torted image with 4% impulse noise (b) AMF (c¢) PM (d)
VMF (e) MVMF (f) proposed method (g) differences be-
tween 6e and 6f.

Jangheon Kim and Thomas Sikora

Table 1 depicts the efficiency of the proposed method
compared with heuristic correlated color filtering ap-
proaches i.e. AMF, VMF, FVMF, VDF and MVDF for
4% and 10% percentages of color impulsive random noise.
In [5], comparison of more methods is given. The com-
parisons verifies the performance of spatio adaptation.
The proposed method with perceptual maximum vari-
ation modeling achieved significant improvements over
the other techniques, ranging from 1.5 dB to 13.9 dB in
PSNR. Figure 6 is provided for visual comparison of re-
sults. Figure 6g shows that our method results in sharper
and more detailed structures after de-noising.

4 Summary and Conclusion

In this paper, we proposed a robust color image noise
reduction method using perceptual maximum variation
modeling. The maximum variations of brightness that
is easily visible by a distortion is modelled by smoothly
varing chromaticity. A combination of geometric con-
tinuations in both brightness and chromaticity localizes
diffusive filtering. This method yield an excellent color
denoising performance preserving image structures.
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