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ABSTRACT

We propose an enhanced window-based approach to local image reg-
istration for robust video mosaicing in scenes with arbitrarily moving
foreground objects. Unlike other approaches, we estimate accurately
the image transformation without any pre-segmentation even if large
background regions are occluded. We apply a windowed hierarchical
frame-to-frame registration based on image pyramid decomposition.
In the lowest resolution level phase correlation for initial parame-
ter estimation is used while in the next levels robust Newton-based
energy minimization of the compensated image mean-squared error
is conducted. To overcome the degradation error caused by spa-
tial image interpolation due to the warping process, i.e. aliasing
effects from under-sampling, final pixel values are assigned in an
up-sampled image domain using a Daubechies bi-orthogonal syn-
thesis filter. Experimental results show the excellent performance
of the method compared to recently published methods. The image
registration is sufficiently accurate to allow open-loop parameter ac-
cumulation for long-term motion estimation.

Index Terms— Image Registration

1. INTRODUCTION

Global motion estimation, i.e. the calculation of a 2D image trans-
formation model for adjacent frames in a video scene, is an impor-
tant tool for many video processing applications. In current video
CODECs, such as MPEG-4 natural video, it is used as prediction
mode for global motion compensation (GMC). Global motion esti-
mation is also an elementary tool for video mosaicing, sometimes re-
ferred as sprite generation. During the last decade, many video mo-
saicing techniques have been proposed [1], [2], [3]. Most combine a
local frame-to-frame registration with a global frame-to-mosaic reg-
istration. Hereby, the accuracy of the generated mosaic is highly de-
pendent on the local registration process. Additionally, many authors
fail to consider independently moving foreground objects, which
do not fit into the transformation model, or use object masks [3]
to remove these foreground objects and achieve exact registration.
Smolic [1] and Dufaux [4] proposed robust techniques based on sta-
tistical robust estimation methods that allow moving objects in the
scenes. If the relative size of the objects gets too large, however,
the statistical robust approach cannot fully prevent the object’s im-
pact or, in the worst case, the algorithm could even adapt to the
foreground object which yields wrongly estimated global motion
parameters (see examples in Section 4). Hsu et al. [2] propose a
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jointly conducted image registration and object segmentation tech-
nique which is very complex and does not satisfy the general case.
In this paper we propose an enhanced strategy for local image reg-
istration which is based on image pyramid decomposition [4]. The
projective (also perspective) model is used to describe the transfor-
mation between two images, since it can be derived from the physical
camera model for translation-less camera motion:
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where (x, y)T are the coordinates of the reference image and
(x′, y′)T the corresponding points in the image to register. The vec-
tor m = [a0..a2, b0..b2, c1, c2] is the parameter vector. Note that
(1) is written in homogeneous coordinates. To estimate robustly the
motion parameters a hierarchical approach is applied. On the lowest
resolution level the translational parameters are determined first and
then gradient descent using the affine model is accomplished while
on higher levels all parameters are estimated. To make sure that the
global motion, i.e. the motion of the camera, is estimated we intro-
duce a windowed motion calculation where the parameter estimation
is only conducted for a special image region. This innovation signif-
icantly improves the registration result which enables the algorithm
to be very reliable when large background parts are occluded. Addi-
tionally, the final parameter set is estimated in an upsampled image
domain [3] to prevent aliasing errors due to possible under-sampling
performing the image warping. Finally we generate video mosaics
by concatenating the short-term motion parameter to obtain a long-
term motion parameter without employing direct frame-to-mosaic
estimation. Thus, a correct video mosaic demonstrates the accuracy
of the method. In the next section the robust global motion estima-
tion algorithm is explained while Section 3 describes the mosaicing
process. Experimental results are given in Section 4.

2. ROBUST WINDOWED IMAGE REGISTRATION

2.1. Newton approach using pyramids and M-Estimator

The core techniques of the registration algorithm are the Newton -
based minimization and the hierarchical decomposition of the input
frames. For the minimization problem a fast gradient descent algo-
rithm based on the ICA-approach proposed in [5] is used. The error
function can be described by
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where In denotes the nth input frame and Ω is the region of image
overlap between In and the warped frame In+1 and (x, y) ∈ Ω. The
decomposition of the input images improves the performance of the
gradient descent algorithm as shown in [4]. The low-pass bands of
the wavelet decomposition are applied to build the image pyramid.
To avoid the influence of outliers a simplified robust M-estimator [6]
is utilized on the gradient descent algorithm.

2.2. Windowed Image Registration

The use of statistical robust estimation methods as shown in [6] and
[4] fails if large foreground objects occur. In this case, it is possible
that the background is no longer the largest object, requiring the gra-
dient descent algorithm to find a minimum which is not global. The
problem is illustrated in Fig.1 and Fig.2. The example shows two
consecutive frames of test sequence “Horse”. A two-dimensional er-
ror surface is built using the 2-parameter translational motion model.

(a) Frame 100 (b) Frame 101

Fig. 1. Frame 100 and 101 of sequence “Horse”

Fig. 2. Error function using the 2-parameter motion model

In this scene the camera follows the foreground object and there-
fore the global minimum lies in the center of the translational coordi-
nates. The background object moves relatively and produces a local
minimum beside the global one. To obtain the global camera mo-
tion, the gradient descent algorithm has to be initialized close to that
local minimum. This is achieved applying a windowing technique
at the coarser levels of the image pyramid. The input images on the
coarsest level are divided in blocks with a size of 32x32 or 48x48.
The blocks are arranged with overlapping of 3/4 of the block size.

To find the best match phase correlation [7] and gradient descent us-
ing the affine motion model are applied on each block. Then the
compensation error block is computed. Only the block with the low-
est error is taken for further processing. The matching can also be
achieved using only phase correlation to accelerate the algorithm.
However, the use of phase correlation combined with the gradient
descent produces more accurate results and is more stable. In the
next level the gradient descent is only executed for the found block.
Fig.3 shows the blocks used for the calculation of the motion param-
eters throughout the image pyramid for the example given in Fig.1.
It can be seen that the best block match belongs to the background

Fig. 3. Best block match for Frame 101 (“Horse”)

object. Thus, the final gradient descent algorithm at the finest level,
i.e. the up-sampled image level, can be initialized by the motion pa-
rameters obtained with the blocks to find the local minimum beside
the global one.

2.3. The Image Registration Algorithm

Using the windowing approach and the techniques described above
our algorithm is shown in Fig.4. For the decomposition a bi-orthogonal
5-tap wavelet filter is utilized. The number of stages of the pyra-
mid is set to 3 [4] plus one up-sampled stage. The windowing tech-
nique is applied at the coarsest level. The achieved motion parame-
ters obtained using phase correlation (PC) and gradient based error
minimization (Gauss-Newton - GN) set up the perspective parame-
ters in the next upper level. In all other levels of the pyramid the
perspective motion model is used. The gradient descent algorithm
is applied on the corresponding blocks as for the example shown
in Fig.3. At the finest level the input images are up-sampled. A
Daubechies 7-tap wavelet synthesis filter is utilized to ensure an ac-
curate interpolation of the warped pixels. The motion parameters
achieved with the blocks on the original level initialize the param-
eters at the finest level. This time the gradient descent algorithm is
applied on the whole up-sampled input images. To avoid distortion
of motion parameters by outliers, the simplified robust M-estimator
is utilized. Finally, the resultant motion parameters are scaled to
the original input frame size. These parameters describe the mo-
tion of the background very accurately. Up-sampling is especially
important to avoid under-sampling which can be brought about by
the resampling that occurs due to warping. Possible under-sampling
produces aliasing and affects the estimation. For this, an accurate
interpolation of the input images is necessary. The 7-tap wavelet
synthesis filter is utilized because it is a good approximation of the
ideal sinc-function and yields high quality interpolation results.



Fig. 4. Proposed image registration algorithm

3. PARAMETER ACCUMULATION AND MOSAIC
GENERATION

Video mosaicing is one of the main applications for global motion
estimation. To build a mosaic the computation of long-term mo-
tion parameters which align all considered images to one reference
coordinate system is essential. Numerous authors have shown that,
due to accumulation of errors, simple concatenation of short-term
motion parameters, also called open-loop estimation, leads to global
misalignment depending on the temporal distance to the reference
image [1]. Therefore, in most cases a direct parameter estimation
aligning the image to the mosaic or a mosaic based reference im-
age is processed [1], [3]. However, this accumulative approach can
be useful to assess the quality of the short-term global motion esti-
mation which is our main goal. Note that also the mosaicing com-
plexity is kept down. In this work, we apply an accumulated motion
estimation technique to create mosaics of high quality. The param-
eter matrix Wn,0 representing the transformation of frame In into
the reference coordinate system of frame I0 is calculated by simple
multiplication in a recursive way:

Wn,0 = Wn,n−1 ·Wn−1,0 (3)

To minimize the average temporal distance between every frame and
the reference image the middle frame of a sequence is set to be the
reference frame. Figure 5 shows the principle of long-term param-
eter estimation along a video shot. For the blending process a tem-

Fig. 5. Principle of parameter concatenation for accumulative long-
term motion estimation and video mosaicing

poral median filter applied to all pixel candidates from the warped
images is used. Thus, using a minimum number of frames, we are
able to filter out the foreground objects in an efficient way.

4. EXPERIMENTAL RESULTS

4.1. Global Motion Estimation

In this section we compare the proposed image registration method
specified in Section 2 with the global motion estimation technique of
[4] enhanced by a more accurate parameter initialization technique
applying phase correlation instead of a modified n-step matching
technique. Comparison of the luminance difference of an image with
the compensated adjacent frame shows that only the proposed tech-
nique is able to estimate the global motion for every scene. For

Fig. 6. Difference image after short-term compensation for the refer-
ence (left) and proposed (right) methods - sequence “Horse”, frame
100. A gray level of 128 indicates a difference of zero.

Fig. 7. Difference image after short-term compensation for the refer-
ence (left) and proposed (right) methods - sequence “Mobile& Cal-
endat”, frame 50



very large foreground objects like in sequence “Horse” (Fig.6) only
our method accurately estimates the global camera motion, whereas
the reference algorithm adapts to a part of the foreground. Also in
scenes with multiple objects (“Mobile & Calendar” - Fig.7) the pro-
posed method gives much better estimation results. To give an ob-
jective measure of the registration quality we calculated the RMSE
and PSNR between a frame and its warped descendent over a whole
sequence. Since for the well known “Stefan”-sequence the segmen-
tation map is available the measures take only background pixel into
account. Figure 8 depicts the PSNR-curves for the background com-
parison. For almost every frame of the sequence our algorithm out-
performs the reference algorithm and the gain in terms of background-
PSNR is for several frames up to 4 dB. Outliers in the curve result
from the window size of the proposed algorithm which in the ex-
periment is fixed to 48x48. It can be shown that flexible window
sizing can solve the problem as displayed in Fig.9. Depending on
the image content a smaller window (32x32) can yield more precise
motion parameters. Table 1 compares the averaged error measures
over the sequence. The mean background-PSNR for the proposed
method exceeds values for the reference algorithm by more than 1.2
dB.
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Fig. 8. Comparison of background-PSNR for short-term compensa-
tion of sequence “Stefan”

Fig. 9. Difference images for frame 239 (biggest outlier of PSNR
curve) using window size 48x48; and 32x32 (right).

4.2. Mosaicing Results

Applying the simple mosaicing strategy of section 3 we obtain rea-
sonable good mosaics without direct long-term parameter estima-
tion. Figure 10 shows the difference image between frames 50 and
35 calculating the transformation using equation (3). Spatial dis-
placements are very small. Thus, the presented mosaic, generated
by blending 61 frames (20 to 80) of “Stefan” is very accurate.

Reference[4] Proposed

avg. RMSE 10.07 8.35

avg. PSNR in dB 27.42 28.66

Table 1. Comparison of global motion estimation algorithms for
sequence “Stefan”

Fig. 10. Left: Difference images for frame 50 and 35 using parame-
ter accumulation, seq. “Stefan” Right: Mosaic (part) using frame 20
to 80 applying only short-term parameter accumulation and temporal
median blending.

5. CONCLUSIONS

We presented an approach to estimate the background motion ex-
actly without any a-priori knowledge about the video content. Our
technique works very well even with large background occlusion due
to large or more foreground objects. This can be seen on the result-
ing error images shown above. The accuracy of the estimation al-
lows the accumulation of short-term motion parameters to calculate
the long-term motion parameters for mosaic construction. Further
work remains to be done on defining the window size used in the
global motion estimation algorithm.
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