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ABSTRACT

We present a robust anisotropic dense disparity estimation 

algorithm which employs perceptual maximum variation modeling. 

Edge-preserving dense disparity vectors are estimated using a 

coarse-to-fine diffusive method on iteratively filtered images, i.e. 

the scale-space. While an energy-minimization framework adjusts 

local disparity, the edges are efficiently preserved by anisotropic 

disparity-field diffusion. However, the localization at weak image 

edges which have small brightness variations is fundamentally 

difficult. In this paper, perceptual maximum variation modeling 

prevents the delocalization flow over edges, e.g. over-diffusion 

and back-diffusion, computed by evaluating small variations. We 

perform disparity-field diffusion on a perceptually optimized color 

space, which combines the small differences in both brightness and 

chromaticity.  Additionally a consistency constraint is employed in 

the modeling to avoid the influence of global color distributions 

and to enhance important edges as the human vision system does. 

The experimental results show the excellent localization 

performance preserving the disparity discontinuity of each object. 

Index Terms— stereo vision, image matching, diffusion processes, 

image color analysis 

1. INTRODUCTION 

Dense disparity estimation is important for many 3D applications 

of image-based modeling and rendering e.g. depth scanning, 

photogrammetry, light-fields, arbitrary viewpoint synthesis, etc. 

Given two images taken simultaneously with a pair of cameras, the 

goal of disparity estimation is to locate for each point in one image 

its corresponding point in the other image. The main difficulty of 

disparity estimation is the ambiguity of local image structure due 

to image noise, unbalanced brightness, similar texture and 

occlusion. If pels in an image look alike, it is difficult to find 

corresponding pels from another viewpoint image. 

To obtain more reliable estimation performance, recent algorithms 

employ local appearance matching with boundary constraints 

between features, edges and disparity discontinuity etc. The 

constraints are utilized as a landmark of the coherency of objects 

[1, 2]. However, their performances are not satisfactory for 

producing a dense field with full resolution because of the ill-

posed localization problem. The latest researches incorporate 

regularization that attempts to filter off delocalized errors. Thus, an 

energy-based formulation is used to iteratively minimize an energy 

function employing a regularization term. In isotropic 

regularization [3], convolution carries out filtering based on 

variance. However, the scale of linear transformations in the 

convolution leads to undesired smoothing of the important 

discontinuity. In contrast, anisotropic diffusion methods [4, 5] are 

applied to prevent important structure from blurring. The basic 

idea is to modify the scale of diffusion at the discontinuity edges 

with steep intensity gradients. This method can be applied for 

disparity estimation to yield smoothed but detailed results in some 

images. However ill-posed local minima solving the PDE (partial 

differential equation) are the serious drawback. 

In our previous work [9], Gaussian scale-space disparity estimation 

with anisotropic disparity-field diffusion efficiently solved the 

problems. The multiple-resolutions of the scale-space provide the 

best trade-off between the detected features and the localization 

performance. Global disparity is estimated with the constraint of 

strong and meaningful boundaries in coarse resolution and then it 

is iteratively refined into finer resolution using PDE. While the 

disparity-field is diffusively smoothed with isotropic propagation 

following the streamline of Gaussian scale-space, anisotropic 

diffusion uses different weighting to suppress the length of the 

propagation for only the orthogonal direction to the edges. This 

method gave us good dense disparity maps preserving importantly 

strong variation structures. However, the regularization often 

results in over-diffusion when evaluating small brightness 

variations in images. If important edges e.g. object boundaries are 

formed by small brightness variations, delocalized flow causes 

over-diffusion smoothing the discontinuity as shown in Figure 1. 

In this paper, we solve this small variation problem by perceptual 

maximum variation modeling. Perceptually-motivated color spaces 

can be utilized to evaluate mutual coherency and geometrical 

continuation. Perceptual maximum variation modeling is employed 

to combine the small differences in both brightness and 

chromaticity, using a least squares optimization applying PCA 

(principal component analysis). A consistency constraint for the 

modeling is considered to avoid influence from global color 

distributions and to enhance homogeneous color regions. We apply 

this new approach for anisotropic disparity estimation.  

In the next section, we describe the perceptual maximum variation 

modeling in detail. Its application to anisotropic dense disparity 

estimation is shown in section 3. Section 4 represents the 

simulation results. 

2. PERCEPTUAL MAXIMUM VARIATION MODELING

2.1. Perceptual maxima estimation in color space 

Our approach is based on the fact that the human visual system 

detects the boundary of objects by considering chromaticity and 

brightness simultaneously. If the brightness difference of 

neighboring object is very small, our eyes can detect the important 
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 (a) 

(b)                                            (c)

Figure 1.  (a) anisotropic diffusion by evaluating brightness 

variation (b) anisotropic diffusion with perceptual maximum 

variation modeling (c) details with over-diffusion on small 

variations (left: 1a, right: 1b). 

(a)                           (b)                          (c)

(d)                            (e)                         (f) 

Figure 2.  (a) CIE-L*a*b* color space, (b) original color image (c) 

L* (d) a* and (e) b* (f) -space from our modeling (here, the size 

of  -space is 255 for visualization purpose). 

edges using the chromaticity difference. We estimate a higher 

dimensional perceptual -space (note that the size of this space is 

not always the same with the size of the common color space) by 

projecting the maximum variations of both brightness and 

chromaticity. First, a color image is converted into the perceptually 

uniform color space of CIE-L*a*b*, as depicted in Figure 2a. 

Perceptual difference between two neighboring color pels in CIE-

L*a*b* can be simply measured by the Euclidean distance between 

the two vectorial values cp(x)=[L*
p,a

*
p,b

*
p] and cq (x)=[L*

q,a
*
q,b

*
q]

with the perceptual color metric c*
pq [6] as  

2 2 2
* * * * * * *

pq p q p q p qc L L a a b b               (1) 

where x denotes a pel x=(x,y) on the CIE-L*a*b* color domain 

I(x): 3
+={c(L*

p,a
*
p,b

*
p) 0}. Color pels with the same c*

pq are 

perceptually equal. The brightness (x) is obtained from the 

luminance domain L* and the chromaticity (x) from a* and b*

respectively. (x) represents the length of the color vectors and 

(x ) the normalized color components.

1

(x) (x)
n

n

i

I and (x) (x) / (x) (x) / (x)I I I     (2) 

We estimate the visually maximum variations using the perceptual 

difference combining (x) and (x) in the color metric c*
pq. A 

linear transform which projects original luminance values L*
p and 

L*
q into a perceptual intensity p and q (which remains 

proportional to the perceptual color difference) is obtained by 

minimizing the following quadratic function. 

2 1
2

*

0, , , , ,

0 1

(x) min ( , )
n n

p q n p q pq

p q p

c w c K       (3) 

w( p, q)=| p q| is a positive, symmetric dissimilarity function. 

The constant K is chosen for the proportional weighting e.g. when 

K=1, L*
p and L*

q are equally modulated with respect to the 

perceptual differences. p and q generally have higher dynamic 

range than L*
p and L*

q, since they include total difference of both 

brightness and chromaticity. The -space has maximum values in 

human visual range and is the perceptual maximum variation. 

Applying PCA to (3), the entire distribution of color values can be 

projected onto the primary L*-axis of the ellipsoid using a linear 

transform. The principal components are the eigenvectors of its 

covariance matrix. By choosing the projection base with the largest 

eigenvalue, the perceptual maximum variation can be estimated as 

shown in Figure 2f. 

2.2. Consistency constraint 

Although PCA performs very well in aligning the colors which 

have locally-compact or globally-smooth spatial distributions, the 

global color distribution of natural image may not be suitable to fit 

local properties. (3) is convex, but may converge into multiple 

minima. We solve the problem by considering a consistency 

constraint based on chromaticity. The chromaticity difference is 

calculated in the equation (1) between two color pels as 

* * 2 * * 2( ) ( )pq p q p qa a b b                          (4) 

As shown in Figure 2d and 2e, the chromaticity domain can be 

used as a good consistency measure because it inherently has 

piecewise smoothness over the image - while the brightness in L* is

affected by saturation, lightness e.g. shadow, reflection and noise. 

The consistency measure is decreased when the spatial distance to 

the pel under consideration increases due to the coherency of 

objects. In this paper, consistency  is defined as a similarity 

group based on probability, using the chromaticity difference pq

in (4) and spatial distance pq with proportional constant k.  and 

d determine the scale of the spatial proximity of the pels. 

0, , , , ,

1

(x) ( / / )
n

p q n pq pq d

i

c k exp       (5) 

During the optimization in (1), the consistency constraint enhances 

the localization of homogeneity between color regions by removing 

the diversity of global color distribution from the image. 

Accordingly, anisotropic diffusion evaluating the maximum 

variations allows a robust convergence performance as Figure 3 

illustrates.

3. ANISOTROPIC DISPARITY ESTIMATION WITH 

PERCEPTUAL MAXIMUM VARIATIONS 

3.1. Local appearance matching using scale-space 

As described in the introduction, a good measure for homogeneous 

regions is needed to restrict matching within coherent objects. A 

supporting region for matching can be established by analyzing a 

smooth varying orientation structure in Gaussian scale-space as 

*b

*a

*L
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  and         (6) 

where =(2 2)-1e-x2/2 2*I(x) is pre-filtered -space map by 

Gaussian kernel and the unit vectors  and  are defined by 

gradient direction of the image Gaussian and its orthogonal 

direction (i.e. isophote direction), respectively. The two varying 

orientation + and - correspond to the vector edges of gradients 

and the isophotes. The scale parameter  of the Gaussian-filter 

kernel is used to control the boundary strength. The coarse-to-fine 

structure of the scale-space provides the best trade-off between 

detection and localization performance. In Helmholtz theory, any 

vector field F  can be represented as a sum of a conservative and 

solenoidal vector field with vector potential A .

con solF F F V A                    (7) 

Taking the divergence of both side as 

( )F V A                     (8) 

where is the Laplacian. Since the second term ( )A  in (4) 

is zero, the boundary function V [7] can be solved by the Poisson 

equation. Let the -space be a continuous function that is only 

divided by perceptual edges into n+1 regions {R0,…, Ri, Rj,…, Rn}.

The supporting region  is calculated by combining similar pels 

enclosed by boundary. 

( ) (x), (x) x (x), (x) x

jR R Ri i

p q p qV w d w d   (9) 

where w ( p, q) is a dissimilarity function with a scale between 

the neighboring pels, { p[( +, -), ], q[( +, -), ]} RN on the 

smoothly varying oriented structure of (6). The first and the second 

terms respectively purpose the grouping of similar pels in a region 

e.g. Ri, and between two regions e.g. Ri and Rj. Dense disparity 

vectors d are locally estimated in the supporting region by 

matching the perceptual maximum intensity. They are refined in a 

coarse-to-fine scheme. The energy function is 

2( ) [ ( , ) ( ( ) ( ), )] x

( ) x

rl l rE d x y x d x V y d

e d d
     (10) 

is the image domain, the subscripts denote the matching 

direction, e.g. l r for left-to-right direction and e  is a 

regularization term with Lagrange multiplier . This method results 

in a more accurate local disparity estimation solution due to the 

restriction of matching errors within . is the determinant of a 

potential function that derives boundary flow to restrict the outlier. 

3.2. Anisotropic outlier removal in disparity-field with 

perceptual maximum variation 

We regularize the locally estimated disparity vector field by 

globally removing the outlier in (10) using an edge-preserving 

anisotropic diffusion as shown in Figure 4: 

,
( )

l l r
e G d                               (11) 

is the perceptual maximum variation in a scale in (6) and

G( ) is an anisotropic diffusion function which is called “edge-

stopping function” [9]– used to modify the diffusion coefficient at  

                 (a)                                           (b)

Figure 3. (a) delocalized flow on a weak edge which causes over-

diffusion and back-diffusion artifacts, (b) the proposed method. 

Figure 4. anisotropic diffusion function G and flux function .

edges and to derive discontinuities in the flux function 

( )=G( ) as 

2 2( / )
( )G e                                  (12) 

where a positive constant   controls the level of contrast of edges 

affecting the diffusion process as Figure 4 represents. We solve the 

energy-minimization problem of (10) by discretizing the following 

numerical equation using finite differences. 

,

,

,

,,

,

1

1

( , )
( , ) ( , ) ( )

x
( ( ), )

( )
x

l r

l r

l r l r

l r

l r l r

l t

l
t

r

rl l r

r

t t

t

t t

Gd d
div d

x d y
x y x d y V N

x d x y
d d

    (13) 

Inhomogeneous time diffusion process with discrete sampling 

solves the problem. Different pels diffuse at a different time-scale 

related to the pel confidence. By increasing the time step  while 

refining resolution in scale-space, higher confidence pels diffuse 

much slower than low confidence pels. In the coarse scales, 

disparity estimation with diffusion is performed for a wider range 

between strong edges following the smooth field. Occlusion can be 

handled in the range. With further iterations, this gradually occurs 

in a narrower range between weaker edges as well. To remove 

outliers of matching, a local matching region with the ranges is 

fitted using normal vector N  of the edge following streamlines of 

scale-space. The divergence term div performs global diffusion of 

the local disparity map to remove outlier in each scale.

4. SIMULATION RESULTS 

In Figure 5, the improvement of our previous method [9] is 

exemplified for the “Balloon” (shown in Figure 1, 720 480) and 

“Wagon” stereo natural images (720 576). Edge-preserving 

disparity estimation can be robustly achieved in image regions 

containing important structure with strong and weak brightness 

0-3 -2 -1 1 2 3

-1

1

( )

( )G

outlier

weak edge

diffusion flow diffusion flow

   edge in maximum variation

consistency constraint
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“Tsukuba” “Cones”
Methods

noocc. all disc. noocc. all disc.

SSD + min-filter 5.23 7.07 24.1 10.6 19.8 26.3

layered stereo [10] 1.30 1.57 6.92 6.59 14.7 14.4

graph-cut [11] 1.94 4.12 9.39 7.70 18.2 15.3

proposed method 1.06 1.21 4.47 3.41 8.55 5.02

noocc.            all               disc.    noocc.             all                 disc.

Table 1. performance comparison using percent of error pels [12] 

in the white regions of alpha maps; noocc.: non-occluded regions; 

disc.:  areas of depth discontinuities. 

variations because the maximum variation modeling improves the 

convergences into the global minima of (10). Figure 6 shows the 

absolute disparity error compared to the ground-truth of images 

“Tsukuba” and “Cones” of [12] using the percentage of error pels. 

We ignore 18 pels of the border for the “Tsukuba” image when 

computing the statistics due to the absence of data in the ground-

truth. Figure 6b and 6e show the robust performance of the 

proposed method for discontinuities and homogeneous regions. 

Table 1 depicts the performance comparison between well-known 

reliable optimization methods (e.g. layered stereo [10] and graph-

cut [11]) requiring heavy computation costs. The errors are 

calculated using alpha maps which decide evaluating regions. The 

proposed method achieves high accuracy performance in texture 

and discontinuity over these techniques.

5. SUMMARY AND CONCLUSION 

In this paper, we proposed a novel reliable anisotropic disparity 

estimation algorithm employing perceptual maximum variation 

modeling. Falling into local minima and over-splitting in texture 

gradient areas can efficiently be avoided by using the properties of 

the scale-space. Over-diffusion and back-diffusion are prevented 

applying perceptual maximum variations. Thus, anisotropic 

disparity estimation can be accurately performed in geometrical 

continuation coherency of a scene. Simulation results using several 

stereo natural images prove the excellent performance. 
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 (a) (b)                                                                      (c) 

Figure 5. (a) base images of “Balloon” and “Wagon” (b) dense disparity maps using our previous work [9] (c) improvements in this paper. 

(a) (b)                                 (c)                                (d)                                  (e)                  (f) 

Figure 6. (a) ground-truth of “Tsukuba” (b) result of “Tsukuba” (c) error pels (i.e. darker pels have larger error) of 6b that have absolute

difference from ground-truth (6a) > 1.0 (d) ground-truth of “Cones” (e) result of “Cones” (d) error pels between 6d and 6e (diff. >1.0). 
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