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Abstract: - Stereoscopic analysis is widely used in machine vision applications. Local and global methods are 
two main branches of stereoscopic analysis. The global methods typically minimize a cost function over the 
entire scene. Although these methods provide high estimation accuracy, because of its high complexity, they are 
not suitable for real-time implementation. The local methods typically use window-correlation approaches, and 
the associated complexity is generally low. However, the estimation accuracy is sensitive to the selected 
window size. In this paper, we propose a multistage local method that operates on image segments instead of 
traditional rectangular windows. This new approach exploits the unique characteristics of image segments, and 
reduces occlusion through a feedback system. Experimental results show that it is very effective for natural 
images. In addition, it has a low computational complexity which may be suitable for real-time implementation. 
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1.  Introduction 
Depth estimation is an important tool in several 
applications such as machine vision, robotics, and 
satellite terrain mapping. With recent advances in 3D 
consumer video communications technology [1], 
application of depth estimation is likely to grow 
significantly in near future. The depth estimation 
techniques are of two types. Depth estimation using 
Laser or infrared ranging techniques are precise and 
popular. However, their applications are limited for 
certain tasks. For example, it is not advisable to laser-
scan a live human. Stereoscopic methods, on the other 
hand, are purely passive and uses a pair of cameras (left 
and right) to map a scene. The lateral shift between the 
images captured by the two cameras, known as disparity, 
is used to estimate the depth of different parts of a scene. 
The stereoscopic depth estimation (SDE) is very 
convenient in image processing applications such as 
range detection, image rendering and 3-D scene 
reconstruction.  
     The SDE methods can be broadly classified into two 
categories: local methods and global methods. The global 
approaches typically define an energy function [2, 3] that 
balances the uniqueness and smoothness constraints. 
Optimal results are obtained when the energy function is 
minimized. Computational techniques such as dynamic 

programming and simulated annealing are typically used 
in the optimization algorithm. Although the problem 
formulation of global approaches is simple and elegant, 
the computational complexity is very high. The local 
methods, on the other hand, generally use area based 
matching for disparity estimation. Here, a window of 
pixels in one image is matched with a slightly shifted 
window of pixels in the other image. The disparity is 
estimated to be the shift that results in the minimum 
matching cost. Typically, the local methods have much 
less complexity compared to global methods.  
     A major difficulty of the window-based local methods 
is the selection of a proper window size. If the window 
size is small, there may not be enough image features in 
a small window, and the estimated disparity may not 
reliable at low texture area. In the extreme case, a 
window of 1 1×  pixels will likely have many potential 
aliases, and the uniqueness constraint may not be 
satisfied. On the other hand, if the window size is large, 
the smoothness constraint may not be satisfied as the 
window may contain two or more sub-regions of 
different disparities. It generally results in blurred 
disparity boundaries. Therefore, it is a challenging task to 
choose windows that are homogenous in disparities and 
yet contain sufficient features. 
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     Several techniques have been proposed to reduce the 
limitation of fixed windows. Fusiello et al. proposed a 
multi-window approach [4]. Instead of analyzing only 
one window centered at the subject pixel, this method 
compares nine candidate windows of equal sizes. The 
candidate that offers the minimum matching cost is 
selected. Hirschmüller et al. [5] have proposed a multiple 
window approach to decrease estimation error at object 
borders. Veksler proposed an approach where the 
windows can take on different sizes [6]. For each pixel, 
many windows of varying sizes are examined. Similar to 
the multi-window approach, the window of the highest 
correlation is chosen. Sun proposed a multi-resolution 
approach [7]. Starting with a coarse version of the image, 
obtained by decimation, this method refines the disparity 
map step by step, as the image resolution improved. At 
each step, an intermediate disparity map is first obtained. 
It is then divided into horizontal stripes and adjacent 
stripes of similar disparity are merged into one. Thus, 
each sub-region reflects the size and shape of the object 
much better. Agrawal et al. [8] investigated the 
relationship between window sizes and disparity levels, 
and found that most windows have at most two 
disparities. Therefore, they introduced the concept of bi-
labeled windows where each pixel is assigned two 
disparity candidates. A global optimization is then 
performed to estimate the disparity. 
     Although, the above methods improve upon the basic 
fixed windows, these approaches do not address 
discontinuity situations well enough. Recently, region 
based correlation matching techniques [9] have been 
proposed to improve the estimation performance. In 
these techniques, an image is first segmented and each 
segment is then matched to obtain the disparities. 
However, the segmentation approach also has some 
limitations. For example, it is difficult to decide correct 
size of the segments. In addition, it is difficult to 
accurately determine the border of a segment. Another 
strategy for improving the performance of stereo 
matching is to use progressive techniques [10]. In this 
method, the disparity map is first calculated for pixels 
with highly reliable matches. In next iterations more 
pixels are added progressively. 
     In this paper, we propose a multistage segmentation 
based local method for disparity estimation. In the initial 
stages, larger segments are used to calculate the disparity 
values. The disparity is refined iteratively with smaller 
segments. A feedback loop is employed to enforce 
directional consistency in each stage, and improve the 
robustness. 
     The organization of the paper is as follows. A brief 
review of background work is presented in section 2. The 

proposed technique is presented in section 3. The 
performance of the proposed technique is presented in 
Section 4, which is followed by the conclusions. 

2.  Review of Background Work 
In this section, we present a brief review of works related 
to SDE with an emphasis on the local methods. 

2.1  Geometry 
In a stereoscopic system, the physical distance (or depth) 
L between an object and the camera follows the 
relationship /L f D d= ∗ , where f is the focal length, D 
is the distance between the two lenses and d is the spatial 
displacement (known as disparity) between the object’s 
projected images in the two views. As f and D are 
constants, 1/L d∝ . Thus, the estimation of depth L 
essentially becomes the estimation of disparity d. 
Therefore, the terms “depth estimation” and “disparity 
estimation” are used interchangeably in stereoscopic 
literature. This simple model also works well for more 
complex systems, such as human eyes, as long as 
L d . 
 
2.2  Local Methods 
The local methods generally use area/region based 
matching for disparity estimation. Here, one assumes that 
a pixel is surrounded by a window of pixels with equal 
disparity. To estimate the disparity for pixel m in the left 
image, a window of pixels around m is selected, and let it 
be denoted by ( )m∆ . This window is matched with a 
corresponding window ( )m′∆  in the right image. The 
center of ( )m′∆  is shifted horizontally by d  to get a 
better match with ( )m∆ . Let the shifted window be 
denoted by ( )m d′∆ + . The matching cost between these 
two windows can be expressed as 

( )( ) ( ),m m dL R ′∆ ∆ +∂  

where (.)∂  is a distance function, ( )mL∆  are the pixel gray 
values in the left image, and ( )m dR ′∆ +  are the pixel gray 
values in the right image.  
     The shift distance d for which the cost is minimum is 
generally considered as the correct disparity. In other 
words, the disparity corresponding to the pixel m is given 
by 

( )
min max

( ) ( )( ) arg min   ,m m d
d d d

d m L R ′∆ ∆ +
≤ ≤

= ∂            (1) 

where min max,d d  are the minimum and maximum 
allowable disparities. 
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     For simplicity, many SDE techniques use rectangular 
window. The distance functions are typically Euclidian 
or Manhattan distance. The disparity estimation using 
Eq. (1) requires much less computational complexity 
compared to the global methods. However, a major 
limitation of this approach is that if the window size is 
small there may not be enough image features in the 
window, and the estimated disparity may not reliable at 
low texture area. On the other hand, if the window size is 
large, the pixels in the window may have different 
disparities, resulting in blurred disparity boundaries. 
 
3.  Proposed Technique 
In this section, we present the details of the proposed 
algorithm. 

3.1  Proposed Multistage Approach 
     The overall architecture of the proposed multistage 
feedback algorithm is shown in Fig. 1. Here, several 
stages of processing are executed hierarchically. Each 
stage extracts a certain subset of the original test image 
and processes that subset with regard to its 
characteristics. The general rule is that large, uniform 
segments are processed first, which is somewhat similar 
to the processing of low-frequency signals first in 
multistage image processing. 
 

 
 

Fig. 1.  Schematic of the proposed multistage disparity 
estimation algorithm. 

 
     Each stage, by itself, is essentially an implementation 
of a local stereo method. However, instead of a “winner-
take-all” decision, the proposed algorithm does not force 
to make a disparity selection. A “no-winner” situation is 
allowed, when no good match is found. The disparity of 
a local region is asserted only if it is considered to be of 
high confidence. The “no-winner” regions are passed 
onto the next stage, where a different algorithm has a 
chance to perform better. The output of each stage would 
be a partially finished disparity map plus a residue image 
pair, whose disparity is yet to be decided. The partial 

disparity maps are eventually aggregated to form a 
complete disparity map. 
     All different stages in the proposed multistage 
concept share the same basic layout. The common 
structure is illustrated in Fig. 2. We use segment-
correlation algorithms as the basic building blocks in our 
system. The disparity computation and aggregation is 
virtually identical for each stage. Their main difference is 
in the segmentation processes. 
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Fig. 2. Basic layout of a stage. 

 
3.2  Image Segmentation 
In this paper, we use segmented image regions instead of 
rectangular window for feature matching. We assume 
that segments of uniform intensities have uniform 
disparities also. In other words, a segment contour is a 
disparity boundary as well. The size and position 
adjustments of a segment come naturally with a properly 
selected segmentation algorithm. Therefore, the 
smoothness constraint is nicely enforced. 
     There is another advantage of using segments. A 
traditional rectangular window needs to contain a 
substantial amount of feature to function properly. 
However, a window may contain little or no feature, and 
therefore may not be able to provide good performance. 
The segmented regions do not have this limitation as the 
segmented boundaries may be considered as features. 
This is illustrated in Fig. 3 where there are two 
featureless objects. As the objects do not have features 
(or intensity variation) inside them, it is difficult to 
estimate disparities with small windows such as C (in 
Fig. 3(b)). However, the feature contours (in Fig. 3(c)) 
A′  and B′  can be used to match the objects. In other 
words, the use of segmentation can effectively handle the 
presence of featureless regions. The large featureless 
objects may fall into the “unique match” category or, if 
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occlusion and boundary situation are dominating, the “no 
match” category. 
     In this paper, we have used standard image 
segmentation algorithms such as region growing, split 
and merge, and vector quantization [11] to segment the 
images. Although, we have not found great advantage of 
one technique over others, the segmentation parameters, 
however, need to be selected carefully to obtain good 
results. 

3.3  Consistency Enforcement 
This section elaborates the concept of disparity 
consistency enforcement previously introduced in the 
stage layout diagram. Note that window-correlation 
method is a directional process, and matching is not a 
symmetric process [4]. When we match from both 
directions (from left to right, and from right to left, in 
most cases), we expect to obtain different sets of 
conjugate pairs. These inconsistencies may occur 
frequently, due to signal noise and different 
segment/window definition, and are observed even when 
1→1 correspondence between the left and right images 
can be established. 
 

 
(a)                      (b)                       (c) 

Fig. 3. Comparison of rectangular region and image 
segments. 

     The left-right inconsistency is very important for 
handling occluded regions. Though this property has 
been used for windows [4], the significance of this 
property is more evident for image segments. Fig 4 
illustrates a stereo pair: the left image represents the two 
views. Segments A and B are corresponding conjugates. 
As shown, we can either shift segment A rightward to 
match B, or shift segment B leftward to match A. 
     The domain of this new disparity map is not identical 
to the left disparity map. Yet, they overlap for the most 
part. Ideally, where they do overlap, the disparity values 
should agree exactly. If not, then a voting mechanism 
must be used to decide which one is better. Generally 
speaking, this step belongs to the aggregation process. 
When occlusion is present, the cost curve is likely to be 
the “no match” type as shown in the centre image in Fig 
4. In this case, the aggregated result is likely to be wrong. 

The combination of symmetric processing and 
segmentation can solve some simple cases of occlusion. 
 

 
 

Fig. 4. Asymmetric cost curves. 

3.4  Feedback System 
The consistency enforcement is difficult to achieve in 
one pass. Hence, in this paper, we use a feedback system 
to resolve the inconsistencies. Let us designate DL (x, y) 
and DR (x, y) as the disparity maps for the left image and 
the right image, respectively. Then, the right-view 
equivalent of the left disparity map can be defined as 

( )( ) ( )yxDyyxDxD LLLR ,,,/ =− . Similarly, the left-view 
equivalent of the right disparity map can be defined as 

( )( ) ( )yxDyyxDxD RRRL ,,,/ =+ . As shown in Fig. 5, left and 
right disparity maps are first transformed into the other 
view. Under each view, the two disparity maps are 
merged into one. When inconsistency occurs, the 
disparity with the smaller matching cost is selected.  

 
Fig. 5. The feedback system. 

 
     Note that during implementation, the view translation 
is performed from the minimum disparity value, in 
ascending order, to the maximum disparity value. A 
disparity value changed in one pass may themselves 
induce another change in the next pass. On the other 
hand, convergence is guaranteed for two reasons. First, 
matching costs are positive, by definition. Second, each 
disparity change will result in either a no-change or a 
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decrease of the total matching cost, where the decrement 
is always a multiple of a pre-defined constant. 
     Experimental results show that 30-70% of all the 
pixels are affected by the consistency enforcement 
during the first pass. The amount of affected pixels 
decays by about a factor of 100 for each subsequent pass. 
Since the test pictures we use typically have 100,000 to 
200,000 pixels, at most three passes are needed before 
the output is stabilized. Among the affected pixels, most 
keep their disparity value and only have their matching 
costs reduced. A few of them have both their disparity 
and matching cost values updated. 
     The consistency enforcement is typically used for 
segments adjacent to occluded areas. For the occluded 
areas themselves, we use the smoothness constraint to 
calculate disparity. For tiny and uncluttered segments, 
the estimation is generally unreliable. To reduce the 
problem, we use 1-D scan line segmentation instead of 2-
D segments and process horizontal and vertical lines 
separately. Once a scan line is broken into several 
segments, the prevailing disparity value in each segment 
is assigned to all the pixels in that segment.  

3.5  The Last Stage 
Previous sections proposed a multi-stage concept. There 
are not a fixed number of stages quoted. Actually, the 
implementation can be flexible to suit the unique need of 
each application. There can be as many stages as needed, 
as long as the performance is still improving. However, 
the most performance improvements are accomplished in 
the first several stages. After that, the improvement 
saturates very fast, and more stages are no longer 
justified. 
     The last stage is quite different from all other stages. 
Since all residue pixels must be processed in the last 
stage, image segmentation is no longer effective. Thus a 
traditional rectangular window technique is employed. 
To improve its performance with minimum additional 
complexity, a fixed-sized and position-varying technique 
as in [4] is used. For each residual pixel, an appropriate 
window within a pre-defined distance is selected to 
achieve the smallest matching cost. 

4.  Experimental Setup 
In this section, we present the details of algorithm 
implementation and experimental set-up. 
 
4.1  Pre-processing 
Before the matching process actually starts, a few 
preparation steps need to be done. First, the sources 
images are low-pass filtered to be smoother. This would 

make more accurate segmentations. The filter is a typical 
3x3 Gaussian matrix. To preserve contrast at edges, all 
the smoothing are performed at non-boundary locations. 
For simplicity, we choose to use the algorithm provided 
in [3] to define image “boundaries”. 
     For any matching algorithm implementation, a range 
of possible disparity values are assumed. Unfortunately, 
most literatures in this area do not explicitly state the 
detailed algorithms involved. In our previous work, we 
have set the range to be the known range of the ground 
truth map. In other words, we have avoided the problem, 
in order to focus on the multistage algorithms. 
     We have improved our algorithm by adding a very 
simple yet robust way to estimate the range. The source 
image pair first undergoes a typical window 
matchingthe algorithm is actually shared with the last 
stage of matching. All non-featureless pixels with better 
than average matching cost are considered to be of high 
confidence. The disparity values of these pixels are built 
into a histogram with Gaussian distribution. When the 
insignificant tails are truncated, the remaining histogram 
makes good disparity range estimation. 
 
4.2  Segmentation 
The implementation of a good segmentation algorithm is 
crucial to obtain a good depth estimation performance. 
Since the proposed depth estimation algorithm is 
intended to be fully automatic, the algorithm must 
operate with no human input. In this paper, we have 
implemented two image segmentation algorithms: region 
growing (first stage), and vector quantization (second 
stage). The implementation details are as follows. 

Region Growing 
Seed selection: The image is scanned from left to right 
and from top to bottom in a zigzag path. The first pixel 
encountered that is not part of an existing region is 
regarded as a seed. 
Growing: The seed itself can be viewed as a region with 
only one pixel. For any region, all of its neighbouring 
pixels not yet grouped are investigated. Ones that satisfy 
the pre-defined threshold are included to the region and 
labelled as grouped. 
Threshold: A pixel can be added, or grown into, an 
existing adjacent segment if intensity criteria are met. Let 
T be a predefined scalar threshold value. Let the average 
intensity of a segment be ( , , )r g b′ ′ ′ . An adjacent color pixel 
with components ( , , )r g b  is included into the segment if 
the following two conditions are satisfied. 

i) ( )max ' , ' , 'r r g g b b T− − − <   and 

ii) 0.299 0.587 0.114 0.8Y r g b T= + + <  
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In our software implementation, T  is set to be 12. 

Vector Quantization 
In vector quantization (VQ), the first step is to generate 
the codebook, which is a suitable set of N color vectors. 
In our implementation, we have used 9N = . Initially, the 
color vectors in the codebook are set as { }, , ,i i iφ φ φ  
0 8i≤ ≤  where / 2, 256 /( 1)r r Nφ = ⋅∆ +∆ ∆ = − . Each 
pixel ( , , )r g b  in the image is assigned the color vector 
with minimum Euclidian distance 

( ) ( ) ( )( )2 2 2' , ' , 'r r g g b b− − −  where ( , , )r g b′ ′ ′  is a color in 

the codebook. The vector itself is then updated to be the 
centroid of these assigned pixels. This process is 
executed iteratively until there is no more change in 
vector assignment or when a preset number of updates 
are reached. 
     After the codebook is calculated, the entire image is 
divided into multiple segments. Each segment contains 
pixels corresponding to only one vector. Any two 
adjacent segments are to be merged, if both of them 
correspond to the same color vector. 
 
4.3  Post Processing 
After all the stages of matching are finished, the disparity 
map still needs more refinement. We apply Gaussian 
smoothing to both horizontal and vertical scan lines of 
the disparity map. Secondly, to remove artefacts, we 
segment the obtained disparity map. Each segment 
contains only pixels of the same disparity and no 
adjacent segments shall have the same disparity. The 
disparity segments with less than 60 pixels are then 
considered unnaturally small and thus an artefact. The 
disparity values for these pixels are then discarded and 
the void is filled by low-pass filtering. 
 
4.4  Performance Evaluation Criteria 
In this paper, we use the percentage of wrongly matching 
pixels (PWMP) as the performance criterion. For a stereo 
image pair, we estimate the disparity for each pixel in 
units of pixels. Let the estimated disparity, and the true 
disparity of pixel ( , )m n  be denoted by ( , )ed m n  and 

( , )td m n , respectively. For an image with size M N× , 
the PWMP is defined as: 

( )100

( , )

( , ) ( , )e t dM N
m n

d m n d m nη δ⋅= − >∑           (2) 

where 1 m M≤ ≤ , 1 n N≤ ≤ , and dδ  is a threshold for 
error tolerance. In this paper, we set dδ  as 1. 

     Note that the performance of an algorithm is sensitive 
to many image parameters such as texture, and edges. 

Therefore, for a given stereo image pair, we calculate η  
for three types of regions. 

i) Entire Image. This provides the overall 
performance. This is referred to as “ALL” in 
Tables 1, 2, and 3. 

ii) Textureless regions: Here, the horizontal gradient 
is small. This is referred to as “TL” in Tables 1, 2, 
and 3. 

iii) Depth discontinuity regions: Here, the neighboring 
disparities differ substantially. This is referred to as 
“DISC” in Tables 1, 2, and 3. 

 
5.  Performance Evaluation 
In this section, we present the performance of the 
proposed technique. Simulations have been carried out 
using four Middlebury stereoscopic image pairs [3]. The 
images represent different content types. Highly accurate 
(ground truth) disparity maps for these images are known 
a priori. One of these image pairs (the Tsukuba) is shown 
in Fig. 6 along with its ground truth disparity map. We 
estimate the disparity using the proposed technique and 
calculate η  using Eq. (2). 
 

        
                      (a)                                     (b) 

 
(c) 

Fig. 6. Tsukuba test image. a) Left view, b) Right view, 
and c) ground truth disparity map. The ground truth 
disparity map corresponds to the left view image. 
 
     The performance of the proposed technique is 
expected to improve as the number of stages increase. 
However, in our experiments, it has been found that 
performance does not improve much beyond three 
stages. Therefore, three stages are used in our 
implementation. A region-growing segmentation 
technique [11] is used in the first stage and a vector-
quantization segmentation technique [12] is used in the 
second stage. Fig. 7 shows the segmented Tsukuba 
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images in segments 1 and 2. In these two stages, only 
large uniform segments are used. The minimum size of 
the segments depends on the stages as well as the left and 
right images. In our implementation, we have set the 
minimum size to about 75 pixels.  
 

       
(a) (b) 

Fig. 7. Segmented Tsukuba images. a) Stage-1,  
b) Stage-2. 

 
     The mean square difference function is selected as the 
cost function. The disparity corresponding to the 
minimum cost is obtained for each segment. All residual 
pixels after the first two stages are processed in the third 
stage, where a typical position-varying window 
algorithm is used. The aggregated disparity map is 
processed by a smoothing algorithm for a last 
refinement. 

Quantitative Comparison 
     Since we allow a partially finished disparity map from 
each stage (except the last one), it is important to know 
exactly what percentage of the test images are 
determined. Table 1 shows the percentage of the 
completion for each stage and its corresponding error 
rate. The estimation efficiency η  is calculated before 
applying smoothing. It is obvious that early segmentation 
stages are very well suited to un-textured regions with a 
very low error rate. 

Table 1: Percentage of finished disparity map at different 
stages for Tsukuba image. In entry ( )α η , α  represents 
the percentage of finished disparity map, and η  
represents the PWMP. “TL” refers to the Texture-less 
regions, and “DISC” refers to the Discontinuity regions. 

 Stage1 Stage2 Stage3 
ALL 34.02(0.038) 38.96(0.033) 100(4.88) 
TL 51.35(0.016) 57.41(0.014) 100(7.23) 

DISC 15.52(0.487) 23.60(0.320) 100(11.73) 
 
     Table 2 reveals the performance advantage of the 
multistage method. Since stage 3 is the last stage in our 
implementation, it is intended to process all residue 
information. Therefore, stage 3 is always used. We can 

see a clear pattern: with the help of segmentation stages, 
the percentage errors decrease substantially. 
     Table 3 compares the performance of the proposed 
algorithm with three other window-based methods: Real-
Time Correlation (RTC) based method [5], fast variable 
window (FVW) method [6], and Windows-based 
discontinuity preserving (WDP) method [8]. The 
performance of the RTC and FVW methods was 
obtained from [6] and WDP performance was obtained 
from [8]. 
 

Table 2: Improvement in performance (η ) at 
different stages.  
Stage 

1 
Stage 

2 
Stage 

3 
ALL TL DISC 

× × √ 1.484% 0.542% 7.63%
√ × √ 1.144% 0.302% 6.29%
√ √ √ 1.136% 0.302% 6.25%

 
     It is observed in Table 3 that the proposed algorithm 
provides a superior performance for the Tsukuba image 
compared to other algorithms. The performance for the 
Map image is also very good (error is less than 1%), but 
not better than the other methods. This is primarily 
because the map image is not a natural image, and the 
image segmentation does not work well, resulting in 
performance degradation. However, as most real images 
are likely to be natural (like the Tsukuba image), this 
limitation should not pose much problem. 

 
Table 3: Performance (η ) comparison of the proposed 
method with other methods. 

Image Pixels FVW 
[6] 

WDP 
[8] 

RTC 
[8,6] 

Proposed 
Method 

ALL 2.35 1.78 4.25 1.14 
TL 1.65 1.22 4.47 0.30 

 
Tsukuba

DISC 12.17 9.71 15 6.25 

ALL 0.24 0.32 0.81 0.70 
TL NA NA NA NA 

Map 

DISC 2.9 3.33 11.4 8.39 

Qualitative Analysis 
Fig. 8 shows disparity maps resulting from the 
“Tsukuba” test images. It is easy to see that the segment 
correlation approach does generate large segments of 
high confidence. Furthermore, the performance is 
especially good at sharp disparity discontinuities. The 
visual quality of the lamp’s supporting rods is among the 
best in all results submitted to the Middlebury test bed 
website [13].  
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     The results for “Map” is shown in Fig. 9. Note that 
the “Map” test image pair is black and white, with 
significant amount of white noise. The patterns are quite 
abstract and therefore the segmentation stages hardly 
yield any useful data. Most of the processing work is 
done by the circular window matching stage. The errors 
occur mostly at the left side of the map, due to occlusion. 
The smoothing procedures failed to propagate correct 
disparity values to the occluded areas mostly because of 
the complicated nature of the image. 
 

 
(a) 

  
(b)                                  (c) 

Fig. 8. Estimated disparity maps of the “Tsukuba” image. 
Disparity maps a) after stage 2, b) after stage 3, and c) 
final. 
 

  
                            (a)                                    (b) 

  
                            (c)                                    (d) 

Fig. 9. “Map” image. a) Left image, b) right image, c) 
Ground truth disparity, and d) Estimated disparity map. 

6. Conclusions 
In this paper, we propose a multistage disparity 
estimation method. The proposed method segments a 
stereo image pair, and estimates the disparity for each 
segment. It also employs a multistage algorithm where 

consistency check of the estimated disparity is carried 
out at each stage. Experimental results show a good 
estimation performance with more than 98.5% accuracy 
for the test images considered. The method has low 
complexity and may be suitable for real-time analysis. 
 
References 
[1] O. Schreer, P. Kauff, Peter, T. Sikora, 3D 

Videocommunication, John Wiley & Sons, 2005. 
[2] D. Marr and T. Poggio, A theory of human stereo 

vision, Proc. Royal Society of London, Vol. B204, 
1979, pp. 301-328. 

[3] D. Scharstein and R. Szeliski, A Taxonomy and 
Evaluation of Dense Two-Frame Stereo 
Correspondence Algorithms, Intl. Journal of 
Computer Vision, Vol. 47, No. 1, 2002, pp. 7-42. 

[4] A. Fusiello, V. Roberto, and E. Trucco, Symmetric 
stereo with multiple windowing, International 
Journal of Pattern Recognition and Artificial 
Intelligence, 14(8), Dec. 2000, pp. 1053-1066. 

[5] H. Hirschmuller, P. R. Innocent, and J. Garibaldi, 
Real-time correlation-based stereo vision with 
reduced border errors, Intl. Journal of Computer 
Vision, Vol. 47, No. 1/2/3, 2002, pp. 229-246. 

[6] O. Veksler, Fast variable window for stereo 
correspondence using integral images, Proc. of the 
IEEE Conf. on Computer Vision and Pattern 
Recognition (CVPR), Vol. 1, 2003, pp. 556-561. 

[7] C. Sun, “Fast Stereo Matching Using Rectangular 
Subregioning and 3D Maximum-Surface 
Techniques,” International Journal of Computer 
Vision, vol. 47, No.1/2/3, pp.99-117, May 2002. 

[8] M. Agrawal and L. Davis, Window-based 
discontinuity preserving stereo, Proc. of the IEEE 
Conf. on Computer Vision and Pattern Recognition 
(CVPR), Vol. 1, 2004, pp. 66-73. 

[9] Y. Zhang and C. Kambhamettu, Stereo matching 
with segmentation-based cooperation, Proc. of the 
7th European Conf. on Computer Vision, 
Copenhagen, Denmark, 2002. 

[10] Z. Zhang and Y. Shan, “A progressive scheme for 
stereo matching,” Lecture Notes in Computer 
Science, Vol. 2018, pages 68-85, Springer Verlag, 
March 2001. 

[11] Gonzales and Woods, Digital Image Processing, 
Prentice Hall, 2002. 

[12] P. C. Cosman, K. L. Oehler, E. A. Riskin and R. 
M. Gray, Using Vector quantization for Image 
Processing, Proc. of the IEEE, Vol. 81, Sept 1993, 
pp. 1326-1341. 

[13] www.middlebury.edu/stereo Middlebury Testbed 
Website. 


