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ABSTRACT
The performance of melody retrieval using a query-by-humming (QBH) system depends on different parameters. For
the query, parameters like length of the query and possibly contained errors influence the success of the retrieval. But
also the size of the melody database inside the QBH-system has a certain impact on the query. This paper describes
how the statistical parameters of a random melody database are modelled to get the same behaviour like a database
containing authentic melodies. Databases containing random melodies are a testing facility to QBH-systems.

1. INTRODUCTION

A query-by-humming (QBH) system enables a user to
hum a melody as a query to retrieve a list of songs with
matching melodies. Generally speaking, such systems
belong to the family of music information retrieval (MIR)
systems. Most QBH-systems process the query in two
stages. First, the transcription stage converts the acous-
tic input of the user to a symbolic representation of the
melody [1–3]. Second, this extracted melody represen-
tation is compared to the content of a melody database
(MDB). A list of matching songs is the result of this com-
parison stage.

A commonly used symbolic representation for melody
descriptions inside a QBH-system is the melody contour.

Unlike symbolic music representations like MIDI (music
instrument digital interface) the melody contour describes
only whether the melody’s pitch goes up, down or remains
the same. The popular Parsons code is providing this
information using only three symbols, »u« for up, »d«
for down and »r« for repeated pitch (also »s« for same)
[4]. A more detailed contour description is given by the
interval contour [5]. It is using the number of semitones
the melody is changing note for note. In this paper, a
five step contour representation is used that extends the
Parsons Code, using »U« and »D« for large intervals of
a minor third and more up and down, respectively. Note
that also the MPEG-7 melody contour provides such a
five step representation [6].
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The comparison of melody contours is carried out using a
similarity measure. Since the melody contour represen-
tation can be seen as a chain of symbols, e. g. a string,
matching algorithms like longest common subsequence,
longest common substring or local alignment can be used
[5]. Another popular approach is to use n-gram methods
like the Ukkonen measure, sum of frequencies or local
alignment [5, 7, 8]. All these methods provide a numer-
ical value of similarity which enables the comparison
stage to determine how similar the user’s query is to each
melody in the MDB.

The performance of a QBH-system depends obviously on
the functionality of the transcription and the comparison
stage. Furthermore, the user’s errors like missing notes
(deletions), additionally notes (inserts) or just wrong notes
(editions) contained in the query do influence the quality
of retrieval [3, 5, 9, 10]. However, also the content of the
MDB has a certain impact on the success of the query.
Clearly the size, e. g. the number of entries in the MDB
influences the result. The more melodies are in the MDB,
the more melodies might be similar to the query and the
correct melody is found more difficultly.

In this paper, the influence of the MDB content is evalu-
ated. Usually the MDB is build from MIDI files. Selecting
the melody from MIDI files however is a time consum-
ing task. To get a large scaled MDB, in our experiments
we measure the statistics of an existing MDB containing
melodies extracted from MIDI data to model a new MDB.
This MDB is filled with random melodies. Doing so an
MDB of arbitrary size can be generated. It turns out that
most important parameters of such a random MDB are the
distribution of the melodies’ length and the distribution
of symbols used for melody description.

For convenience, all distance metrics used for the eval-
uation are briefly described in Section 2. The following
Section 3 discusses the properties of MDBs. The eval-
uation of different MDBs containing random melodies
is described in Section 4. Conclusions are drawn in Sec-
tion 5.

2. DISTANCE METRICS

Distance metrics are used to determine the similarity of
two melodies in a QBH-system. Their properties have a
strong impact on the result of the comparison, of course.
Several distance metrics are evaluated in this paper. Our
attention is turned to their usability for the comparison

of melody contours. The distance of two melodies de-
scribes their similarity. Different techniques like dynamic
programming or n-gram methods can be employed for
calculation of these similarities. The distance metrics
described here are subdivided into these two families.

2.1. Dynamic Programming

String matching based on dynamic programming in its
most basic form involves creating a two dimensional ma-
trix A that stores the results of comparisons between two
strings [5]. The similarity measure is the maximum value
of this matrix, e. g.

RDP = maxA. (1)

2.1.1. Longest common subsequence

With longest common subsequence (LCE) technique, the
query is matched against pieces with no penalty for gaps
of any size between the matching symbols [5].

Let A be the two dimensional matrix, q is a vector with
contour values of the query and p is the vector with the
melody’s contour values. Index i is running from 0 to
length of the query and j is running from 0 to length of
piece. The elements of the matrix A are calculated using

A[i, j] = max


A[i−1, j] i ≥ 1
A[i, j−1] j ≥ 1
A[i−1, j−1]+1 q(i) = p( j) ; i, j ≥ 1
0

(2)
The elements A[i, j] are incremented in case of a match,
else wise the value of the left upper diagonal is taken.

2.1.2. Local alignment

Local alignment (LAL) can be modified by cost parame-
ters for inserts, deletions, and editions. The result is never
negative.

A[i, j] = max


A[i−1, j]+d i ≥ 1
A[i, j−1]+d j ≥ 1
A[i−1, j−1]+ e q(i) = p( j) ; i, j ≥ 1
A[i−1, j−1]+m q(i) 6= p( j)
0

(3)
The cost parameters are usually chosen to d = 2, e = 1
and m =−1. Matrix A shows how well sequence q can
aligned to sequence p. Since the alignment is maximised
locally, a maximum in the matrix indicates the best match-
ing portion of the sequences.
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2.1.3. Longest common substring

It is also meaningful to reset the result in A[i, j] to zero if
the symbols compared do not match.

A[i, j] = max


A[i−1, j]+d i ≥ 1
A[i, j−1]+d j ≥ 1
A[i−1, j−1]+ e q(i) = p( j) ; i, j ≥ 1
0 q(i) 6= p( j)

(4)
The maximum in the matrix represents the length of the
longest common substring (LCT).

2.2. N-gram methods

Melody strings can be broken down into n-grams, or sub-
strings of a given length n for matching [5]. N-gram meth-
ods involve counting the common (or different) n-grams
of the query and melody to arrive at a score representing
their similarity. A melody contour described by I interval
values is given by

c = [m(1),m(2), . . . ,m(I)] (5)

To create an n-gram of length N we build vectors

gN(i) = [m(i),m(i+1), . . . ,m(i+N−1)], (6)

containing N consecutive interval values, where i =
1 . . . I−N+1. The total amount of all n-grams is I−N+1.
Again, q represents the vector with contour values of the
query, and p is the piece to match against. Let QN and PN
be the sets of n-grams contained in q and p, respectively.

2.2.1. Coordinate matching

Coordinate matching (CM), also known as count distinct
measure, counts n-grams gN(i), that commonly occur in
q and in p:

RCM = ∑
gN(i)∈QN∩PN

1. (7)

2.2.2. Sum of frequencies

Sum of frequencies (SF) counts how often a n-gram gN(i)
that occurs both in q and p is contained in p.

RSF = ∑
gN(i)∈QN∩PN

U(gN(i),PN) (8)

All frequencies U(gN(i),PN) are summed up.

2.2.3. Ukkonen measure

The Ukkonen measure (UK) counts the n-grams that do
not commonly occur in p and q.

RUK =− ∑
gN(i)∈QN∪PN

|U(gN(i),QN)−U(gN(i),PN)| (9)

It is sufficient to explore the set union QN ∪PN since only
these n-grams contribute to the result. Large values indi-
cate a big difference between the two sequences, therefore
a minus sign is added to let the maximum value indicate
best accordance.

2.3. Normalisation

For melody comparison in QBH-systems it is reasonable
to normalise the distance metrics to the length of the
melodies [5, 6, 11]. The normalisation can be varied
using the melody’s length, nth root of length or logarithm
of length. According to results in [11] using a n-gram
length of 6, UK and SF perform best using length, CM
requires second root and LAL, LCE, and LCT require
ninth root.

3. MELODY DATABASE

To describe a melody database (MDB) in general different
statistical parameters can be employed. Besides of the
size of the database, these are the distribution of melody
lengths and melody contour symbols. Moreover, look-
ing at the melody as a random process the conditional
probabilities of symbols can be taken into account.

The MDB evaluated in this paper comprises 405 MIDI
files retrieved from the Internet. The genre is mostly
popular music with some additional classical tunes. The
melodies are extracted using the melody track of the MIDI
file, which is converted to a five step melody contour
representation following the MPEG-7 standard [6].

3.1. Database size

In the literature very different sizes for MDBs are evalu-
ated for use in QBH-systems. Small sized databases con-
tain 50 titles like in [12], 100 titles like in [13] or 183 titles
[1]. Medium sized databases contain about 400–1000 ti-
tles [6, 14–18]. There are some evaluations with large
scaled databases like [19] using 3000 titles, [4, 20, 21] us-
ing about 10,000 titles and [22] using 39,925 titles. DAN-
NENBERG et al. use a small collection of titles (258 songs
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Figure 1: The histogram of melody lengths of the melody
database used in this paper.

of the Beatles) and extract single themes to get a larger
database (resulting in 2844 themes in this case) [23].

On the other hand, existing databases of music download
services contain about 2 million titles like iTunes [24], up
to 6 million found at mp3.com [25]. The performance
of QBH-systems using large scaled MDBs is therefore a
point of interest.

3.2. Melody length

In this paper, the length of the melody denotes the to-
tal number of symbols. Talking about the melody of a
tune the musical theme and the leading voice in a piece
must be distinguished. In the latter case also all repe-
titions contribute to the melody’s length. Information
about the melody lengths distribution can be illustrated
using a histogram and/or the mean length. KOSUGI et al.
use a database holding about 10,000 titles and provide
a histogram, the mean value for a the melody length is
365.16 symbols. DANNENBERG et al. extract singular
themes as described in Section 3.1. The mean length is
41 symbols [23].

The distribution of lengths for the MIDI data used in this
paper is depicted in Figure 1. The shape of the distribution
is similar to the distribution found in [21], the mean length
is 299.3 symbols.

3.3. Statistics of contour symbols

In this section we focus on parameters of the melodies
itself. First, the distribution of symbols used in the
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Figure 2: The distribution of symbols in the melody
database.

melodies are a point of interest. Second, the statistical
dependencies in the sequences of symbols are evaluated.

KIM and CHAI evaluated five step contours as they are
used in MPEG-7[12, 14]. Their measurements show a
uniform distribution. Also for our MDB the symbols are
uniformly distributed, as shown in Figure 2.

More statistical parameters of the melodies taken as a
sequence of symbols are obtained by measurement of the
conditional probabilities. The sequence of contour values
is a random process with discrete time and discrete values
[26]. A simple type of such a process is the Markov chain
of first order. The melody contour is a random process
with M = 5 symbols sm. Having the same number of
states u(k) at time k, that depend on the last state u(k−1).
The conditional probability for a change from state sm to
state sn can be written as

Pmn(k) = P(u(k) = sn|u(k−1) = sm) . (10)

There are M2 possible state changes. The probabilities
of all state changes can be summarised in a transition
probability matrix Q(k) containing the elements

Q(k) = [Pmn(k)] . (11)

Table 1 shows the transition probability matrix of the
MIDI-MDB. The maximum value is P(»r«|»r«) = 0.08.
This means a repetition »r« followed by a repetition »r«
occurs most often. Next, P(»d«|»d«) and P(»u«|»u«) are
high valued. In other words, a musical scale is often
played upwards or downwards note by note. Interest-
ingly, probabilities for P(»U«|»D«) and P(»D«|»U«) are
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Table 1: Transition matrix Q with conditional probabili-
ties of the MIDI melody database.

Pmn(k) = P(u(k) = sn|u(k−1) = sm)

sn
D d r u U

D 0.019 0.037 0.027 0.029 0.059
d 0.025 0.080 0.043 0.053 0.037

sm r 0.026 0.038 0.080 0.030 0.039
u 0.026 0.053 0.034 0.059 0.022
U 0.074 0.028 0.029 0.024 0.026

high. Since »D« and »U« are used for the interval minor
third and more, jumping to the next chord note may be
indicated by this probabilities.

3.4. Generation of random melody databases

For the generation of random melody databases the sta-
tistical properties of the MIDI melodies are used. To
generate randomized melodies, the distribution function
for melody lengths from Figure 1 and for symbol distri-
bution in Figure 2 were used for a first approach. The
contour symbols itself were generated without any statis-
tical dependencies in this case. For a second approach,
the database was built using the Markov-model employ-
ing the transition matrix in Table 1. The obtained MDBs
are denoted as Random-MDB and Markov-MDB in the
following sections.

4. EVALUATION

The result of a query will change if different MDBs with
different properties are used. Obviously, the success of a
query decreases if more titles are contained in the MDB,
because more melodies may be similar to the query. Also,
the genre of music may have a certain impact on the
search results. Finally the distance metrics used in the
QBH-system influence the result for a query.

DANNENBERG et al. evaluate databases with respect to
the number of entries [23]. They use three different search
algorithms working on some kinds of melody representa-
tions. In their results, they find slow decreasing success
of queries with raising MDB sizes NDB. To model this re-
lationship they use the expression RMRR = 1

logNDB
which

represents the success of queries reasonably well. The
value RMRR indicates the mean reciprocal rank (MRR).

The typical usage of a QBH-system is to seek for the
desired melody in a list of results. Therefore, in this paper
the recall is used to judge the success of query.

Let D = {d1,...,dNDB} be the set of melodies in the
database and Dq a subset of melodies found for query
q. Furthermore, Rq is the a set of melodies from Dq, that
are relevant for query q. The number of relevant doc-
uments is indicated by |Rq|. The recall is then defined
as

V :=
|Dq∩Rq|
|Rq|

. (12)

In our evaluation all melodies in the database are dif-
ferent, therefore V is either 1 or 0. To find out the re-
call for a distinct database size, e. g. NDB = |D| a set
of T melodies is chosen from the database as a query.
The number of queries found for query q is limited to
S = |Dq|= {1,3,10}. The mean value of VS indicates the
performance of T queries. In this paper T = 20 is chosen.

4.1. Melody databases

First, the search performance of the MDB created from
MIDI data is evaluated. Second, the same evaluation is
carried out with MDBs containing randomized melodies.

4.1.1. Melody contours from MIDI

For evaluation three sets of T = 20 melodies of the MIDI-
MDB are selected and the mean recall values VS are taken
for different database sizes. The length of the queries
is limited to 8 symbols. This is a critical value as in-
dicated by formerly performed evaluations [11]. For
shorter queries no useful results are retrieved, for longer
queries the differences between the different distance mea-
sures become less detailed. The MDB size is limited to
NDB = 20,50,100,200,300 and 400 to observe the differ-
ent performances depending on the database size. A size
of N = 1000 is used for the randomized MDBs. This size
is a first attempt to see if the modellation of the database
content results in a resonable performance similiar to
the MIDI-MDB. Much larger sizes are required for real
world szeanrios, as pointed out in Section 3.1. The dis-
tance metrics are UK, SF, CM and LCE, LCT and LAL
using optimum normalisation (see Section 2).

In Figure 3 the recall V1 for all distance metrics are shown,
marked by an asterisk. SF, CM, LAL and LCT perform
same and better than UK, and LCE yields unusable results.
Results are much better for V3 as shown in Figure 4(a).
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Figure 3: Recall V1. Please note that LAL and LCT yield exactly the same results. Therefore only results for LAL are
depicted.

Again SF, CM, LAL and LCT perform best followed
by UK. Due to poor performance LCE is left out here.
Lastly, V10 is depicted in Figure 4(b). The overall results
are better than for V3, LCE does not perform reasonable
again.

To model the behaviour of the recall values RMIDI of the
MIDI-MDB, the non linear model function

Rmodel(n) =
{

1 if RMIDI = 1
c1 nc2 if RMIDI < 1 (13)

with some constants c1 and c2 is used. The constants are
obtained taking all recall values less than 1 and using
a minimum mean square error criterion. Values of the
model function are indicated by a solid line in Figure 3,
4(a) and 4(b).

4.1.2. Contours from random melodies

The Random-MDB and Markov-MDB were evaluated the
same way as the MIDI-MDB. Again three sets of 20 titles
were chosen from the respective databases and limited to
8 symbols.

For V1 (see Figure 3) the Random-MDB fits better to the
values of the MIDI-MDB for SF and CM, whereas the

recall values using the Markov-MDB fit better for UK.
For all other distance metrics, both databases fit to the
values of the MIDI-MDB. For V3 and V10 the Markov-
MDB yields results that are a better approximation for the
results of the MIDI-MDB than using the Random-MDB,
see Figure 4(a) and 4(b).

The recall values V1 of the ramdomized databases at
NDB = 1000 fit well for UK and LCE with the results
obtained by the model function (13), but SF, CM, LAL
and LCT yield smaller recall values. For V3, except for
UK all recall values for NDB = 1000 are smaller than ob-
tained by the model function. For V10 the recall values
of the Markov-MDB are higher than the model function
(13). For LAL no extrapolation is possible since only one
recall value of the MIDI recall values is less than 1.

4.2. Discussion

Especially for V3 and V10 the Markov-MDB containing
random melodies appears to be a sufficient replacement
for a MIDI-MDB with authentic melodies. The Markov-
MDB is generated using just three statistical parameters,
that are distribution of the melody lengths, distribution of
contour symbols and the state transition matrix to model
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Figure 4: Recall values for V3 and V10. LCE is omitted due to poor performance. Results of LAL and LCT are identical.

the Markov process. Even the Random-MDB using only
the distributions of length and symbols follows the trend
of results obtained by the MIDI-MDB pretty well.

A non linear model function is used to extrapolate the
behaviour of the MIDI-MDB, see equation (13). However,
the results of the randomized MDBs do not match well
with the model for larger values of NDB.

5. CONCLUSIONS

The performance of a QBH-system was evaluated in
this paper by measuring the recall. All measurements
were performed with the original MIDI-MDB using
400 melody contours and two newly generated random-
ized MDBs containing 1000 entries. For generation of the

Random-MDB only the distribution of the melody lengths
and the distribution of the contour symbols were used,
the Markov-MDB employed also a state transition matrix
derived from the existing melody contours to model a
Markov process of order one.

Recall values were measured using different query sets.
For query generation 20 melodies were taken from the
respective MDBs and truncated to get short queries that
are typical for use with QBH-systems. The recall val-
ues obtained were similar for MIDI and random filled
MDBs, especially in case of the Markov-MDB. To check
the results of the randomized MDBs, the recall values
of the MIDI-MDB were extrapolated using a non linear
modelling function. It turned out that recall values of the
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model and randomized MDBs do not match in all cases,
therefore further work is necessary on this topic.

A notable result of the experiments performed is that the
performance of a QBH-system is independent in some
sense of the database’s content. On the other hand, the
Markov model improves the convergence of results for
random melodies and authentic melodies. Further inves-
tigations could include the use of higher order models.
Generally speaking to model the data in the MDB is a
promising utility for evaluation of distance metrics used
in the QBH-system. The scaleability in size enables the
evaluation of real world scenarios.
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