Real-Time Multiple-Description Coding of Speech Signals

Jan Weil and Kai Cluver and Thomas Sikora

Communication Systems Group, Technische Universitat Berlin
Einsteinufer 17
10587 Berlin
Germany
{weil,cluever,sikora}@nue.tu-berlin.de

Abstract

When sending speech data over lossy networks like
the internet, multiple-description (MD) coding is a
means to improve the perceived quality by dividing
the data into multiple descriptions which are then
sent as separate packets. In doing so the speech sig-
nal can still be decoded even if only parts of these de-
scriptions are received. The present paper describes
the structure of a software which demonstrates the
benefits of this coding scheme using a client-server
architecture.

Keywords

Multiple-Description Coding, Speech Coding, Real-
Time Coding

1 Introduction

When transmitting real-time speech data over
the internet to multiple receivers (multicast or
broadcast), the quality on the receiving side de-
pends on how many packets are lost on their
way. Various receivers may experience greatly
differing speech quality due to varying network
conditions. Since in the multicast scenario de-
livery monitoring for all of the subscribed re-
ceivers is not feasible, action is needed on the
receiving side.

To ensure graceful degradation of the per-
ceived quality with increasing packet loss, MD
coding can be applied, i.e. the data which is to
be transmitted is divided into two or more de-
scriptions. Even if not all of them are received,
the signal can still be decoded, albeit with lower
quality.

In the course of our project, two different MD
speech codecs were developed. The first one
is based on logarithmic pulse code modulation
(PCM). The second one is a variation of the
G.729 annex A codec, which is based on code
excited linear prediction (CELP) and defined
by the International Telecommunication Union
(ITU). To show the improvement due to MD
coding over lossy channels, a demonstrator ap-
plication has been developed. The structure of

this application is described in the present pa-
per.

The rest of this paper is organized as follows:
In Section 2 the principles of MD coding are
explained. The actual implementation of the
demonstration application, which is the main
subject of this paper, is described in section
3. After that the usage of the program is il-
lustrated in Section 4. Section 5 contains some
concluding remarks.

2 Multiple-Description Coding

MD coding [1] provides a transmission link with
diversity in order to improve robustness to chan-
nel breakdown. The coded signal is split into
two or more descriptions which are transmit-
ted over the same number of different channels.
These channels may indeed consist of different
physical links, or of different packets transmit-
ted through networks like the internet.

C (Bit Rate Ry) / / yi(n)

‘ Side Decoder 1 ———

21(n) Encoder Central Decoder Ll

C, (Bit Rate Ry) ya(n)

Side Decoder 2 —————»

Figure 1: MD coding scheme with two descrip-
tions

The principle of a two-channel MD coded
transmission is shown in fig.1. From the in-
put signal, z(n), the encoder generates two de-
scriptions C7 and C5 to be sent over two lossy
channels. If no loss occurs, both descriptions
will be used by the central decoder to recon-
struct the signal yo(n) with high quality. If one
of the descriptions is lost, the received part of
the code will enable its corresponding side de-
coder to yield a reduced-quality version of the
output signal, y;(n) or y2(n). The transmission
will be interrupted only when both descriptions

are lost.

The design of MD coders is subject to con-
flicting requirements [1]. If the side decoders
were optimized for high signal quality, given
the bit rates Ry and Ro for C7 and Cj, little
would be gained by combining both descriptions
in the central decoder, which would then yield
a similarly high quality, but at a considerably
increased bit rate of R = Ry + Ro. If, on the
other hand, the central decoder were designed
for minimum distortion at a bit rate of R, any
splitting of the code would result in poor per-
formance of the side decoders. Therefore, the
usual objective is to find a compromise for cen-
tral and side decoder qualities.

Many designs aim at balanced descriptions,
i.e. equal bit rates (R2 = R;) and equal distor-
tions of the side decoders. For more than two
MD channels, balanced descriptions will yield
decoding distortions which do not depend on
the individual subset of descriptions but only
on the number of descriptions received. The de-
coded quality will then degrade gracefully with
increasing channel failure ratio.

A receiver for L descriptions consists of 2F —1
decoders (including the central decoder). Con-
sequently, the MD decoder will be extremely
complex for high values of L if explicit side
decoders are employed. This problem can be
avoided by using a hierarchical (layered) speech
coder together with forward error correction
(FEC) codes for the construction of multiple de-
scriptions [2]. The approach consists of apply-
ing unequal loss protection to L code layers and
re-grouping the symbols of the resulting code
words into L descriptions. With k& < L descrip-
tions received, the MD decoder is able to decode
the basic k layers of the coded speech. The side
decoders are constructed implicitly by FEC de-
coding.

The FEC coding scheme causes high gross bit
rates compared to the original codecs. It is pos-
sible, though, to trade robustness for bit rate
savings if the coarse base layer is made up of
more than one description.

3 Real-Time Implementation
3.1 Overview

An overview of the system as a whole is given
in fig.2. It allows multiple client applications
to be served concurrently. On the sending side
a server waits for incoming requests. Clients
connect to the server and request speech data
streams. For every requested stream, a new

sender process is started by the server which
connects to one of the available speech sources,
encodes the data frame by frame, and sends the
coded frames to the client by which the stream
has been requested. It is possible to set up sev-
eral streams to enable the user to compare dif-
ferent configurations.

3.2 Serving side

In fig. 2 every square-cornered box represents a
separate process. Technically there is no need
to start a separate process for every newly re-
quested stream. Since, however, in the course of
this project a single sender application had al-
ready been developed, it was easier to add a sim-
ple server and start the senders as subprocesses.
This server is written in Python [3], which is a
dynamic object-oriented programming language
and even provides a TcpServer class as part of
the standard library.

For demonstration purposes the source of the
speech data was supposed to be selectable so
that different speech sources could be offered.
Using the Jack Audio Connection Kit (JACK)
[4] this can easily be achieved. Part of it is
jackd, a low-latency audio server which al-
lows several different applications to share audio
data among them. It is typically used for pro-
fessional audio processing applications, which
means that running jackd at a sampling rate
of 8 kHz, as we did, is quite unusual. Neverthe-
less, JACK has proven absolutely appropriate
to our needs.

In our case the selectable sources are pro-
vided by Ecasound [5]. Ecasound is a software
package designed for multitrack audio process-
ing, which, among other things, can be used to
play back audio files in loops. For each loop a
JACK port is registered so that our senders can
connect to these ports.

3.3 Transport protocol

The transmission of audio and video data over
the internet is often done using the Real-time
Transport Protocol (RTP) which is usually built
on top of the User Datagram Protocol (UDP).
Compared to pure UDP, RTP additionally
provides sequence numbering, time stamping,
payload-type identification, and delivery moni-
toring. Because sequence numbering is the only
feature that was needed in our case, we decided
not to use RTP. Instead we added a 16-bit
header containing a sequence number which is
incremented for each packet. To make sure that
an overflow of the sequence number does not

Server

Jackd

A
Senderl

YI[[]
> Sender2

Ecasound

Loopl

Loop2 Y[

> Sender3

Loop3 v]

> Sender4

> Sender5

Client1

Stream1

Stream?2

AN

Stream3

Client2

Stream1

Stream?2

Figure 2: Structure of the system. Clients connect to the server’s control port and request streams.
For each stream, the server starts a new sender process which encodes the audio data delivered by

JACK and sends it to the requesting client.

disturb the order of descriptions, the sequence
number range is limited to a multiple of L.

The UDP port number on the receiving side
is limited to the range of 55550 to 55569, which
means that, on a distinct host, at most 20 sep-
arate ports can be served simultaneously.

3.4 Control protocol

In order to control the transmission of data a
simple plain-text protocol has been designed.
The transport protocol used for this purpose is
the Transmission Control Protocol (TCP). The
server waits for requests coming in on TCP port
55555. A request consists of a special command
word in capital letters, possibly a list of argu-
ments separated by spaces, and the closing two
special characters carriage return (CR) and line
feed (LF). After the request has been processed
the server returns an answer which consists of
a return string in capital letters (0K on success,
otherwise ERROR), possibly an additional return
string, and once more the concluding sequence
CR-LF. There are four known commands:

SOURCES This command is used to retrieve the
list of available speech sources. It does not
allow any arguments. On success a comma-
separated list of readable JACK ports is
returned.

PORT Before a stream is requested, the client
asks the server to allocate a port number.
The next time the client issues the OPEN

command this port will be used. On suc-
cess the port number is returned by the
server. If the client is located behind a
firewall, incoming UDP traffic is usually
blocked. If, however, the client sends an
initial packet to the newly allocated port
on the serving side, many firewalls will ac-
cept the incoming stream as a response to
this packet. This concept is known as UDP
hole punching.

OPEN Exactly six arguments are expected to
open a new stream: the number of the
receiving UDP port, one of the formerly
listed sources, the codec to use (either pcm
or celp), the number of descriptions to use,
the number of descriptions which make up
the base layer, and an additional argument
which is either the segment length (PCM)
or the number of CELP segments per MD
frame. If a new sender process has been
started successfully the server returns the
corresponding process 1D.

CLOSE This command needs the formerly trans-
mitted process ID of a sender as the only
argument. By receiving this command the
server sends a signal (SIGINT) to the ap-
propriate process. To ensure that no other
processes are killed maliciously, this is only
done if the transmitted ID actually rep-
resents one of the formerly spawned child
processes.

3.5 Client side

On startup every client must connect to the
server. If this connection fails, the client exits
with an error message. A client which is con-
nected to the server asks for the available audio
sources first. After that it may request up to 20
separate streams. For each stream a new UDP
socket is opened on the client side. The audio
processing driver has again been implemented
based on JACK. For cross-platform purposes
audio drivers based on RtAudio [6] and Port-
Audio [7] have also been added.

3.5.1 Jitter buffer

In the internet, as in any packet-switched net-
work, packets can be lost or delayed, which in
real-time applications is the same when a cer-
tain delay is exceeded. Due to its best-effort
nature, the internet protocol may even result
in duplicated packets. Variations in the trans-
mission delay are taken into account by a jitter
buffer which collects packets as they come in
and delivers them in order and thus ensures con-
tinuous playout of the speech data. Our jitter
buffer implementation firstly collects the incom-
ing packets in a separate programming thread
and, secondly, delivers all available descriptions
of the current frame whenever the data of a
frame is requested by the decoder. The size of
the jitter buffer is initially set to 500 ms. It
grows exponentially when a packet is received
which cannot be buffered due to its sequence
number being too high. Basically, this means a
change of size is not supposed to happen more
than once. This is, however, also influenced by
the clock skew compensation algorithm which is
described in section 3.5.3.

3.5.2 Packet loss simulation

To demonstrate the effect of packet loss on the
client side, even if actually not a single packet
is lost in the internet, a packet loss simulator
has been added. Independent random packet
losses are simulated. Packet loss is applied after
the received packets have been delivered by the
jitter buffer.

3.5.3 Clock skew compensation

On the serving side the senders are synchro-
nized by JACK which is driven by a clock as
part of the sound card. On the client side an-
other clock is used to drive the audio processing.
Since these two clocks are not synchronous it is
highly likely that they do not run at exactly
the same rate. With typical clocks this skew
can amount to up to £0.5% [8].

Assuming the audio data on the client side is
processed faster than on the sending side, the
jitter buffer will eventually run empty. If, on
the other hand, packets are sent faster than a
client plays out the decoded audio data, the jit-
ter buffer will overflow. We tested our client on
serveral systems and in some cases we saw the
jitter buffer run empty in only 40 seconds. To
counter this problem, we added a cubic spline
interpolator as suggested in [8]. Depending on
the jitter buffer fill level, which was low-pass fil-
tered for this purpose, the playout is accelerated
if the level is too high and slowed down if it is
too low. Fortunately this interpolation does not
degrade the perceived speech quality.

4 Usage

The client side of the demonstrator is imple-
mented as a graphical user interface (GUI),
available for GNU/Linux as well as Microsoft
Windows operating systems. Fig.3 shows a
screen shot of the demonstrator operating on
Linux.

The parameters of a stream that is to be
added can be configured in the upper part of
the GUI. Beneath this part, the simulated loss
rate can be controlled. Every stream is shown
as a row in the table on the left side. In this
table, several stream parameters are displayed.
By selecting one of these rows, the active stream
is determined. At any time, there is exactly one
active stream of which the audio data is being
played out. The history of the active stream re-
garding all packet loss, both possible losses in
the network and simulated losses, is displayed
on the right side. The bit rate actually received
is drawn in red. The blue graph displays the
residual packet loss ratio which counts those
frames for which none of the descriptions has
been received.

5 Conclusions

Multiple-description coding is a technique to
improve the perceived quality when sending
multimedia data over lossy packet-switched net-
works like the internet. A software architecture
for real-time transmission of MD coded speech
signals over the internet has been developed.
The system allows experimental comparison of
different configurations of MD speech codecs
under varying channel conditions. It forms an
extensible framework for further experiments on
MD speech and audio coding in general.

W TU Berlin - MDS-Demo
Multiple-Description Coding of Speech Signals

Codec Demonstrator

Technische Universitat Berlin .

Source: [Korean |v] Codec: [celp

|v] Descriptions: Min. Packets: C@ Celp Frames per Segment:

. = [~]
Loss Rate: ﬂ %
| Source | Codec | Descriptions | Min. Packet — Received Bitrate — Residual Loss Ratio
American_English pem 4 1 1)) L
- ||Gross Bitrate: 16.8 kBit/s
German celp 2 1 | [
s
-
] -
—&80 C
S
o - T
= i I
m fa]
E 10 —60 &
- F rr
2)
5 o 8
et
= 40
m)
r o
5 - L
L (=]
— 20
[0 8
o- =0
e e e e e B e L e e e S |
25 20 15 10 5 0
|] Past Time (s)
.o . . L1 i n
Close Stream Sliding Window Size:] ﬂ s

Figure 3: Screen shot of the demonstrator

6 Acknowledgements

The authors would like to thank Rubén Heras
Evangelio for providing the initial implementa-
tion of the jitter buffer as well as helping with
porting the demonstrator to the Windows oper-
ating system.

This project was funded by the German Re-
search Foundation (DFG).

References

[1] V. K. Goyal. Multiple description coding:
compression meets the network. IEEE Sig-
nal Processing Magazine, 18(5):74-93, 2001.

[2] L. Rizzo. Effective erasure codes for reliable
computer communication protocols. ACM
Computer Communication Review, 27(2),

April 1997.

[3] Python Software Foundation. Python
programming language — official web-
site. http://www.python.org. last checked:
05.01.2007.

[4] P. Davis et al. Jack audio connection
kit website. http://www.jackaudio.org. last
checked: 05.01.2007.

[5] K. Vehmanen. Ecasound website.
http://www.eca.cx/ecasound. last checked:
05.01.2007.

6] G. P. Scavone. Rtaudio website.
http://www.music.mcgill.ca/~gary/rtaudio/.
last checked: 07.01.2007.

[7] R. Bencina et al. Portaudio website.
http://www.portaudio.com/. last checked:
07.01.2007.

[8] T. Trump. Compensation for clock skew in
voice over packet networks by speech inter-
polation. In Proceedings of the 2004 Interna-
tional Symposium on Circuits and Systems,
Vancouver, Canada, 2004.

