
A Standards-Based, Flexible, End-to-End
Multi-View Video Streaming Architecture

Engin Kurutepe∗, Anıl Aksay†, Çağdaş Bilen†, C. Göktuğ Gürler‡,
Thomas Sikora∗, Gözde Bozdağı Akar†, A. Murat Tekalp‡

∗Technische Universität Berlin, Berlin, Germany
†Middle East Technical University, Ankara, Turkey

‡Koç University, Istanbul, Turkey

Abstract— In this paper we propose a novel framework for
the streaming of 3-D representations in the form of Multi-
View Videos (MVV). The proposed streaming system is com-
pletely standards based, flexible and backwards compatible
in order to support monoscopic streaming to legacy clients.
We demonstrate compatibility of the proposed system with
various possible encoding schemes and operating scenarios.
In the current implementation, the MVV’s in the server are
compressed using a simplified form of MVC with negligible
loss of compression efficiency and streamed using Real Time
Streaming Protocol (RTSP), Session Description Protocol
(SDP) and Real Time Protocol (RTP) to the clients. We
describe our extensions to SDP and discuss a preliminary
RTP payload format for MVC. The clients in this imple-
mentation perform basic error concealment to reduce the
effects of packet losses and decode MVC in near-real-time.
The modular clients can display decoded 3-D content on a
multitude of 3-D display systems.

I. INTRODUCTION

The most important promise of the Internet based
media delivery over traditional broadcast systems is the
dimension of asynchronicity provided to the users. The
ability to watch content at the desired time instead of
being bound by schedules is very valuable. This was
quickly realized and there has been great amount of
research on the Internet-based on-demand streaming of
audio and video content. This field has already begun
producing successful commercial applications such as var-
ious Internet radio stations and on-demand video services
such as YouTube and Joost.

On the other hand 3-D video is a very new topic.
Although 3-D illusions had people’s imagination since
the 19th century, the computing and storage capabilities
of common computers have only recently reached a nec-
essary level to allow 3-D video applications. As a result
there has been very interesting research work on the cap-
ture, representation and rendering of real-life scenes under
various research programs such as ATTEST project[1]
and 3DTV NoE[2] in Europe or FTV[3] project in Japan.
These research programs are beginning to produce mature
results which can be used to provide interactive 3-D
entertainment. However, there has been relatively little
research on the transmission aspects of 3-D video.

Single view video plus depth representation is stan-
dardized under MPEG as a result of ATTEST work[4],
which embeds the compressed depth map to the auxiliary
information field of each frame at the cost of increasing

the bitrate by about 10-20%. This representation allows
generation of stereo video from a single video plus the
associated depth map. However, the range of motion
offered by such a single view method is very limited due
to occlusions. Hence, the need for multi-view representa-
tions which fill the disoccluded regions using pixels from
other views.

For the streaming of multi-view representations two
extreme operating conditions can be imagined: streaming
all views in a highly compressed MVC[5] bit-stream
with little possibility of random access or encoding all
views independently and streaming only the required
views. Since MVC bit-stream is H.264/AVC compliant
both of these extremes can be streamed over the Internet
using existing single view streaming standards. However,
there are very good reasons for developing new methods
to stream multi-view videos over the internet. Firstly,
both extremes can be suboptimal as the rate-distortion
results presented in [6] suggest. Secondly, and more
importantly, streaming MVC streams over existing single
view methods prevents the system from utilizing various
multi-view related information and possibilities. Such
possibilities are still an open research question and can
range from selective streaming such that each client gets
only required views to obtaining different views from
different sources in a Peer-to-Peer streaming setting to
make use of path diversity.

Therefore, our motivation in this paper is to develop a
streaming framework for Multi-View Videos (MVV), that
will allow flexible and standards based streaming of MVV
under various operating scenarios. The proposed system is
intended to be a basis for future MVV streaming research
and, therefore, is designed to be as flexible and extensible
as possible. We will both describe our design decisions
and provide details of our current implementation where
appropriate.

The remainder of this paper is organized as follows: In
Section II, we present overall features of the proposed
framework and set it into context. In Section III, we
discuss the compatible encoding schemes for the frame-
work and give details of the current implementation. In
Section IV, we discuss SDP and RTP related particulars
of the system and introduce two new extensions. In
Section V, we detail our decoding, error concealment
and display implementations and explain how these could



be extended. And finally in Section VII, we draw our
conclusions and discuss future directions of research.

II. SYSTEM OVERVIEW

In this paper we propose a novel server-client streaming
architecture for multi-view videos. The proposed system
is built on existing standards and can support several
different streaming scenarios, which cover a wide range
of possible 3-D applications:

• N-View Streaming for advanced multi view display
systems.

• Selective Stereo Streaming and user head tracking in
order to provide free viewpoint experience.

• Stereo Streaming with static two views and fixed
viewpoint.

• Video plus depth streaming for static stereo viewing.
• Mono-view conventional 2-D Video Streaming for

legacy clients.
The server contains the MVV representation in encoded

form. A version of Multi-View Coding (MVC) with a sim-
plified spatial reference structure, as described in Section
III, is employed in order to provide easier random access
within a stream and VCR-like play controls. However,
the proposed streaming framework can also work with
other encoding schemes, such as independently encoded
streams without inter-view dependencies or MVC base
layer with independently encoded enhancement streams
such as described in [6].

The server and clients use RTSP[7] to negotiate and
initiate on-demand 3-D streaming. When a client first
contacts the server an SDP[8] announcement describing
the available MVV representation is sent from the server.
Our proposed framework extends the standard SDP in
order to support MVV’s as described in Section IV-B.
The client determines the streams required according to
current streaming scenario and initiates streaming over
RTP[9] for those streams as described in Section IV-A.

The received RTP packets are decoded and displayed
by the client. The modular client proposed in this paper
currently supports various display systems such as N-view
lenticular sheet displays, parallax based stereo displays1

and polarized projection systems and can further be
extended to support other display technologies.

III. MULTI-VIEW VIDEO ENCODING

A. Supported Standards

H.264/AVC Part 10 is the state-of-the-art video coding
standard for monoscopic video [10]. Most of the represen-
tations of 3D Video are coded using variants of this codec.
Simulcast coding uses several streams all encoded by
H.264/AVC independently. Video-plus-depth (VPD) rep-
resentation is coded by independent coding of video and
depth signal by H.264/AVC with small information about
depth data embedded into the high-level syntax. MPEG
specified a corresponding container format “ISO/IEC
23002-3 Auxiliary Video Data Representations”, also

1Such a display is found on Sharp Actius AL3D Notebook

Fig. 1. Standard MVC prediction structure

Fig. 2. Simplified MVC prediction structure

known as MPEG-C Part 3. MVV is coded by exploit-
ing temporal and inter-view redundancy by interleaving
camera views and coding using a hierarchical manner
with some MVC specific tools like illumination and color
compensation, improved disparity estimation and coding
and some high-level syntax changes. MVC is decided to
be an amendment (Amendment 4) to H.264/AVC which
is scheduled to be finalized in early 2008[11].

B. Multi-View Coding Encoder Implementation

MVC encoder used in our system is JMVM 3.0.2
[12]. This is the reference software for MVC. It uses
prediction structure of hierarchical B pictures for each
view in temporal direction as shown in Figure 1 [13].

Main prediction structure shown in Figure 1 is quite
complex introducing a lot of dependencies between im-
ages and views. These dependencies make use of the re-
dundancies present in both spatial and temporal directions
to reduce the bitrate, however they also impose many
restrictions in decoding and packet loss sensitivity. An
alternative simplified structure is presented in [14], and
shown to be very close to the main prediction structure
in terms of overall coding efficiency. In this simplified



View

Base Layer MVC

Enhancement Layers
for two Views

B B P P

tim
e

I B P P

Fig. 3. Scalable MVC coding reference structure. Only two enhance-
ment layers shown for the sake of simplicity

prediction structure the temporal prediction using hierar-
chical B-pictures remains unchanged when compared to
original MVC prediction structure, but spatial references
are only limited to anchor frames, such that spatial
references are only allowed at the beginning of a group
of pictures (GOP) between I and P pictures as shown
in Figure 2. Since the proposed system intends to sup-
port different types of clients, this simplified prediction
structure is adopted due to its more flexible decoding
properties. Due to the lack of dense spatial references
in this prediction structure, the multi-view video server
or media aware network elements (MANE) further down
the network can easily adapt the MVC stream to the needs
of the clients and/or network conditions by leaving out the
unneeded NAL units. Therefore, each client receives only
the necessary NAL units in order to decode their requested
views. A Multi-view client will receive all the packets,
whereas a stereo client would receive only two requested
streams and the anchor frames for the other streams which
are references for the requested two streams. Similarly a
mono client would receive only a single requested stream
plus the necessary anchor frames for decoding. On the
other hand a legacy client which does not understand the
extensions described later in this paper would only receive
the independently encoded and H.264/AVC compatible
stream from the complete MVC representation.

In the case where the system is also required to support
dynamic selective streaming clients, which track user
movements to predict the required streams, the encoding
structure proposed in [6] can be used. This scheme as
shown in Figure 3 consists of a lower bit-rate base layer
MVC, which is received by all clients, in addition to
enhancement layers for each view, which independently
coded from each other. When this coding scheme is
employed monoscopic clients only receive the base stream
from the base layer MVC plus optionally the correspond-
ing enhancement stream. Stereo clients receive base layer
MVC plus two enhancement layers of their choice. In this
encoding scheme, the views in the base layer provide a
kind of an insurance when wrong enhancement streams
are streamed due to errors in the head tracking system.

And finally Multi-view clients receive the base layer MVC
and all enhancement layers.

IV. MVV STREAMING

A. H.264/AVC over RTP

MVC builds upon the scalable extensions of
H.264/AVC standard, therefore in order to stream
MVC over RTP, existing work and standards should
be employed as the basis any novel system in order to
obtain a flexible and backwards compatible solution.

The streaming of H.264/AVC streams over RTP is
standardized by the IETF in RFC 3984[15], which defines
the RTP header usage and necessary packetization rules
for H.264/AVC. RFC 3984 is perfectly applicable for
the streaming of MVC bit streams as a whole, because
they are H.264/AVC compatible. However, this approach
leaves out the possibility of adapting the MVC bitstream
to the receiver’s needs and capabilities.

We propose to stream MVC over RTP in a similar
fashion to [15]. However, instead of sending the MVC
stream as a single H.264/AVC stream over RTP, we break
up the stream into several parts. NALUs belonging to
different views are streamed over different RTP port pairs
as if they were separate H.264/AVC streams. Although
only the stream for the independently encoded view will
be decodable by itself, this scheme allows the receiver to
select which parts of the whole MVC stream to receive.
The server neither imposes any restrictions nor issues any
warranties on the decodability of the packets received
by the client: the client is responsible for selecting a
correct set of streams such that the received packets can be
decoded. In other words, this means that a mono client
who is interested in watching a view, must request the
stream for that view and any other streams which are
referenced by the NALUs in the stream for that view
in order to receive a correctly decodable set of NALUs.
The information required in order to select the correct
set of streams should be provided before the start of
the streaming session through out of band methods. An
example of such a method is detailed in the following
section.

Additionally, in order to save further bandwidth, instead
of sending whole reference streams the server can also
send only the referenced NALUs in the reference streams.
Due to the simplified MVC prediction structure employed
by the proposed system, this can be achieved by only
sending the anchor frames. We call such a stream an
anchor-only stream. It should be noted, however, for the
optimal disk access performance of the server, the anchor-
only streams are best stored in separate anchor-only files
which increase the number of total stored bits for the
whole MVC representation at the server but have no
effect on the transmitted bitrate. Any available anchor
streams should also be declared before the streaming
session begins, as described in the following section for
instance.



B. SDP Extensions for Multi-View Video

The Session Description Protocol (SDP) is one of the
standardized methods to announce on-demand content
available on a server. It provides a simple and extensible
framework to describe the detailed properties of the con-
tent, enabling the initialization of the data connection and
decoder structures at the client. An SDP announcement
consists of a list session-level section followed by zero or
more media-level sections. In addition to media dependent
information such as RTP clock rate, sequence number and
timestamp base values, the media-level sections contain
necessary information to start RTSP streaming and estab-
lish the RTP/RTCP connections to the server.

In the proposed system, each view contained in the
MVV is declared as a separate media-level section in
the SDP announcement in order to enable the receivers
to freely select the views they would like to receive.
Although the MVV is compressed to a single file after
MVC encoding, we propose to break this single file into
separate streams for each view on the disk. This has no
effect on the total file size and facilitates fast disk access
to the NAL units belonging to different views. Obviously,
most of these streams will not be independently decodable
due to the inter-view dependencies generated by MVC
compression. In order to define such dependencies in SDP
announcements a dependency variable has already been
suggested in [16], which introduces two different types of
dependencies for layered streams to handle either hierar-
chically layered streams such as SVC or non-hierarchical
layered streams generated by multiple description coding
approaches. However, in a multi-view video stream there
can be further types of dependencies which should be
declared explicitly. Here we introduce an extension to [16]
with three new types of references between streams.

First new type of dependency is the MVC decoding
dependency, which is analogous to the layered SVC
stream dependency case in [16]. This dependency is
declared as a:depend=mvc ID LIST for all streams
part of the MVV representation, where ID LIST is a
space separated list of view ID’s, where a MVV with 9
views could have view ID’s from 0 to 8. The view IDs
in this list correspond to the immediate dependencies of
the stream in question. In order to make sure that the
received NALU’s are indeed decodable, a client needs to
obtain the all dependencies of those reference streams in
a recursive fashion as well.

The second and third dependency types assign depth
and anchor streams to their corresponding views, with the
help of the view ID’s. Although there is no syntax based
decoding dependency between such streams, there is a
clear semantic dependency, as a decodable depth stream,
for instance, is of little value without the video stream it
belongs to. These types of dependencies are declared as
a:depend=KEYWORD ID, where KEYWORD is depth
and anchor for depth and anchor streams respectively
and ID is the view ID of the corresponding view.

This method of declaring dependencies is completely
backwards compatible. In accordance with original SDP

specification, a client which does not understand the pro-
posed SDP attributes, it simply ignores them. However,
such a client might request and fail to decode dependent
streams due to its inability to use the dependency infor-
mation. Similarly, a 3-D client can still display in 2-D
if it is connected to a conventional video server with no
support for the proposed SDP attributes.

V. REAL-TIME MVV DECODING AND DISPLAY

A. Real-Time MVV Decoding

We are currently using FFMPEG library [17] for real-
time decoding of H.264/AVC streams. In order to decode
MVC streams, we modified FFMPEG library with the
appropriate changes.

First of all, DPB (Decoded Picture Buffer) size is
increased since MVC prediction requires more pictures
to be held in the buffer. There are some modifications
in SPS (Sequence Parameter Set) to signal for the pre-
diction structure and to signal the MVC encoding and
modifications in NALU header to signal for the view ID
and related other information. Since prediction of each
frame and memory management depends on view ID of
the frame, view ID tag is added to each frame in DPB
and related functions such as prediction list generation,
buffer management are modified accordingly. Support for
new picture reordering commands is also implemented to
modify the list more efficiently for inter-view prediction.
Since MVC required the base-view to be standard com-
patible, view ID and related other information cannot be
signaled in the NALU header of the base-view NALU. It
is decided to have another NALU following each NALU
of base-view with the required information which is called
suffix NALU. Also for compatibility reasons, B-pictures
that are marked as non-reference for the base-view, can
be used for inter-view prediction and needs to be stored
in DPB. Finally illumination compensation is added into
the motion/disparity compensation module.

Although normal decoding requires all the views in the
MVC stream, MVC decoder can decode only selected
views according to the prediction structure. Monoscopic
client needs only NALU of base view (S0) and decodes
only base view. Similarly, stereo client decodes only first
two views (S0 & S1) and multiview client decodes all of
the views (S0 to S7).

After the packets received from the network, they are
placed into a buffer. Before MVC packets are fed into
MVC decoder, they need to be synchronized. All packets
need to be ordered in decoding order according to both
decoding time and decoding view. Decoding view order
depends on the prediction structure of the encoder. For
the scheme in Figure 1, decoding view order is S0-S2-
S1-S4-S3-S6-S5-S7 and for the scheme in Figure 2, it is
S0-S1-S2-S3-S4-S5-S6-S7. Also for the base-view (S0),
suffix NALU is required to be after the NALU of this
view.

In order to maintain the decoding order in both di-
mensions and detect packet losses, a buffer called “Tetris
NALU Buffer” is used as shown in Figure 4. The name



Fig. 4. The Tetris NALU Buffer. Player Sink objects are responsible
for extracting packets for different views from the RTP stream(s).

comes from the fact that decoder is only fed with NALU
packets, when the packets from each view is received.
Similar to the game over in Tetris, buffer overflow occurs,
when one of the packet is missing in the line and packets
are filling some of the vertical line. In order to avoid
buffer overflow, after a predefined timeout duration, half-
full lines are fed into the decoder and error concealment
methods are employed.

B. MVC Error Concealment

Error concealment methods implemented for the codec
is based on non-normative error concealment algorithms
for monoscopic H.264/AVC[18]. These algorithms are
modified for the changed prediction structure in MVC.

Losses can be categorized into two: Slice losses and
frame losses. Slice losses occur when frames are coded
into multiple slices and some of the slices are lost. In
such cases, using neighboring macroblock information
like motion vectors and/or pixel values is employed
[18]. Depending on the type of the frame, concealment
approaches change as well.

In case of slice losses, the processing order is chosen
to take the macroblock columns at the edge of the frame
first and then move inwards column by column so to
prevent concealment mistakes from propagating. For intra
coded frames spatial concealment is applied. Pixels in the
blocks are interpolated using a weighted average of the
neighboring pixels as shown in Figure 5.

For inter coded frames, motion vectors of the neighbor-
ing blocks are used as a possible candidate for the motion
vector of the lost block. Among the possible candidates
and zero motion vector, a boundary matching algorithm
(BMA) is applied to find the block that smoothen the
boundary between the lost block and the neighbors. Selec-
tion of candidates and BMA is shown in Figure 6. When
candidate motion vectors are selected, blocks with motion

Fig. 5. Spatial concealment based on weighted pixel averaging

Fig. 6. Selection of the motion vectors for prediction

vectors that uses previous frames from the same camera
is used. If no such block exists, then spatial concealment
is used.

In case of frame losses, above algorithms do not apply
since no neighboring block is available. In such cases,
copying previous frame from the same camera is used.

C. MVV Display

Depending on the type of display, both the num-
ber of streams required and the way the images are
displayed on the screen change. For N-view lenticular
sheet displays and parallax based stereo displays, views
from the same time instant needs to be combined to
be shown on the display. This combination process is
called “interzigging”[19], where N-views from WxH size
images are combined to generate a single image of size
W x H. f(x, y, color channel) is a function defining
for each pixel and each color channel which camera
view will be used and changes according to the display
type. For instance, if f(50, 70, 1) = 5, then the red
component of the pixel in 50th column and 70th row
will be taken from the 5th camera’s red component of
the corresponding pixel location. Interzigging module will
combine N-views and generate the required output in
RGB domain. Output of this module will be shown on
the screen according to the timestamp of the image. The



interzigging operation effectively reduces the resolution
of each decoded image and combines them in such a
way, that the resulting image is spatially multiplexed
in an optimal fashion by the lenticular array and the
user experiences the intended 3-D perception.For displays
using shutter glasses no interzigging is necessary and
the display module displays two images at different time
instants. Similarly for polarized projection systems no
interzigging is performed and images for left and right
eyes are sent to corresponding and precisely aligned
projectors which project the images to the same physical
area on a polarization preserving screen.

VI. RESULTS

An actual demonstration implementation has already
been recently presented at IBC 2007 in Amsterdam. In
the demo implementation, the Multi-View Server con-
tained several multi-view sequences with and without
depth maps. Three different clients with different display
systems (Single View Legacy Client, Sharp Stereo Laptop
with parallax barrier display and Multi-View Client with
9-view lenticular sheet display) connected to the server
and requested a random sequence. In the case of stereo
and mono clients, a random view from the multi-view
sequence was selected as well. The reference streams for
the requested streams were found using the dependency
information contained in the SDP and those reference
streams were requested in order to ensure decodability.
We presented sequences both with and without separate
anchor-only streams. The demonstrated multi-view client
was able to decode and display 9-view multi-view se-
quences in real time on a standard high-end laptop.

VII. CONCLUSIONS

In this paper we have introduced a new framework
for streaming of Multi-View Videos. The most important
features of the proposed framework are its flexibility and
standards compatibility. Therefore the system described
in this paper can be implemented using currently existing
standards with some well defined extensions. We hope
that this methods will form the basis of future discussion
and research. In addition to the streaming issues, we
have also detailed encoding, decoding, error concealment
and display methods for an example implementation of
the proposed framework. We believe the proposed MVC
payload format as separate H.264/AVC streams and SDP
extensions for the declaration of different types of de-
pendency relations between the streams contained in a
multi-view sequence can prove to be good starting points
for further standardization process.

ACKNOWLEDGMENTS

This work is supported by EC within FP6 by VISNET
II Network of Excellence and 3DTV Network of Excel-
lence under Grant 511568.

The authors would like to thank Atanas Boev from
Technical University Tampere for his help with the in-
terzigging process.

REFERENCES

[1] C. Fehn, P. Kauff, M. de Beeck, F. Ernst, W. Ijsselsteijn, M. Polle-
feys, L. Van Gool, E. Ofek, and I. Sexton, “An Evolutionary and
Optimised Approach on 3D-TV,” Proc. of IBC, 2002.

[2] L. Onural, T. Sikora, and A. Smolic, “An overview of a new euro-
pean consortium: Integrated three-dimensional television–capture,
transmission and display (3DTV),” Proceedings of European
Workshop on the Integration of Knowledge, Semantics and Digital
Media Technology (EWIMT), 2004.

[3] M. Tanimoto, “Free viewpoint television-ftv,” Picture Coding
Symposium 2004, pp. 15–17.

[4] C. Fehn, “Depth-image-based rendering(DIBR), compression, and
transmission for a new approach on 3 D-TV,” Proceedings of SPIE,
vol. 5291, pp. 93–104, 2004.

[5] K. Mueller, P. Merkle, H. Schwarz, T. Hinz, A. Smolic, T. Oel-
baum, and T. Wiegand, “Multi-view video coding based on
H.264/AVC using hierarchical B-frames,” in Picture Coding Sym-
posium 2006. PCS, 2006.

[6] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven
selective streaming of multi-view video for interactive 3DTV,”
IEEE Transactions on Circuits and Systems for Video Technology,
2007.

[7] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming
protocol (rtsp).” [Online]. Available: http://www.ietf.org/rfc/
rfc2326.txt

[8] M. Handley and V. Jacobson, “SDP: Session description protocol.”
[Online]. Available: http://www.ietf.org/rfc/rfc2327.txt

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rtp: A
transport protocol for real-time applications.” [Online]. Available:
http://www.ietf.org/rfc/rfc3550.txt

[10] I. Rec, “H. 264 & ISO/IEC 14496-10 AVC, Advanced video
coding for generic audiovisual services,” ITU-T, May, 2003.

[11] A. Vetro, P. Pandit, H. Kimata, and A. Smolic, “Joint Draft 3.0
on Multiview Video Coding,” Joint Video Team, Doc. JVT-W209,
2007.

[12] P. Pandit, A. Vetro, and Y. Chen, “JMVM 3 software,” ITU-T JVT-
V208, 2007.

[13] H. Schwarz, D. Marpe, and T. Wiegand, “Analysis of Hierarchical
B Pictures and MCTF,” Multimedia and Expo, 2006 IEEE Inter-
national Conference on, pp. 1929–1932, 2006.

[14] P. Merkle, A. Smolic, K. Mueller, and T. Wiegand, “Comparative
Study of MVC Prediction Structures,” ITU-T JVT-V132, 2007.

[15] S. Wenger, M. M. Hannuksela, T. Stockhammer, M. Westerlund,
and D. Singer, “RFC 3984: RTP payload format for H.264 video.”
[Online]. Available: http://tools.ietf.org/html/rfc3984

[16] T. Schierl and S. Wenger, “Signaling media decoding
dependency in Session Description Protocol (SDP),”
2007. [Online]. Available: http://tools.ietf.org/wg/mmusic/
draft-schierl-mmusic-layered-codec-03.txt

[17] Ffmpeg homepage. [Online]. Available: http://ffmpeg.sourceforge.
net/

[18] V. Varsa, M. Hannuksela, and Y. Wang, “Non-normative error
concealment algorithms,” ITU-T VCEG-N62, vol. 62, 2001.

[19] L. Lipton and M. Feldman, “A new autostereoscopic display
technology: The SynthaGram,” Stereoscopic Displays and Virtual
Reality Systems IX, Andrew J. Woods, John O. Merritt, Stephen A.
Benton, Mark T. Bolas, Editors, Proceedings of SPIE, vol. 4660,
pp. 229–235, 2002.


