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 Abstract— This paper presents a new approach for generation 

of super-resolution stereoscopic and multi-view video from 

monocular video. Such multi-view video is used for instance with 

multi-user 3D displays or auto-stereoscopic displays with head-

tracking to create a depth impression of the observed scenery. 

Our approach is an extension of the realistic stereo view synthesis 

(RSVS) approach which is based on structure from motion 

techniques and image-based rendering to generate the desired 

stereoscopic views for each point in time. Subjective quality 

measurements with 25 real and 3 synthetic sequences were 

carried out to test the performance of RSVS against simple time-

shift and depth image-based rendering (DIBR). Our approach 

heavily enhances the stereoscopic depth perception and gives a 

more realistic impression of the observed scenery. Simulation 

results applying super-resolution show that the image quality can 

further be improved by reducing motion blur and compression 

artifacts. 

 

Index Terms—stereoscopic imaging, 2D/3D conversion, 

structure-from-motion, super-resolution stereo, image-based 

rendering 

I. INTRODUCTION  

XTENDING visual communication to the third dimension 
by providing the user with a realistic depth perception of 

the observed scenery instead of flat 2D images has been 
investigated over decades. Recent progress in related research 
areas may enable various 3D applications and systems in the 
near future [1]. Especially, 3D display technology is maturing 
and entering professional and consumer markets. Often the 
content is created directly in some suitable 3D format. On the 
other hand the conversion of existing 2D content into super-
resolution 3D is important for content owners. Movies may be 
reissued in 3D in the future. 
 Many fundamental algorithms have been developed to 
reconstruct 3D scenes from monocular video sequences [2]-
[24]. These algorithms can roughly be divided into two 
categories: methods that tend to create a complete 3D model of 
the captured scene [2]-[10], and methods that just render 
stereoscopic views [11]- [24].   

Available structure from motion (SfM) techniques from the 
first category estimate the camera parameters and sparse 3D 
structure quite well, but they fail to provide dense and accurate 
3D modeling as it is necessary to render high quality views. 
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For the second category, depth-image-based rendering 
(DIBR) [11]-[17] seems to be the most promising technique 
both for stereoscopic view synthesis and for transmission in 
3D-TV broadcast systems [25][26]. DIBR approaches render 
new virtual views via dense depth maps for each frame of the 
sequence by shifting image pixels according to their assigned 
depth. On the other hand, dense depth estimation is still an 
error prone task and computationally very expensive. In [17] a 
semi-automatic approach for dense depth estimation was 
introduced using a machine learning algorithm (MLA) for 
assigned keyframes and depth tweening between these frames.  

Other approaches, e.g. [18][19], are using motion parallax  
or spatio-temporal interpolation to generate the desired 
stereoscopic views. Ross [20] introduced a very simple but 
(for some video sequences) effective technique for 
stereoscopic depth impression using binocular delay. Finally, 
in [21] planar transformations on temporal neighboring views 
are utilized to virtually imitate a parallel stereo camera rig. 
But, in any case, time consistency along the sequence is 
heavily dependent on the 3D scene, since a stereo rig is not 
correctly modeled.   
 In this paper, we present a new approach for generation of 
super-resolution stereo and multi-view video from monocular 
video based on realistic stereo view synthesis (RSVS) [22]. It 
combines both the powerful algorithms of SfM [2] and the 
idea of image-based rendering (IBR) [27] to achieve photo-
consistency without relying on dense depth estimation.  
 Most available 3D display systems rely on 2 views (stereo 
video) to create a depth impression. However, more advanced 
systems use multiple views (e.g. 8 views showing the same 
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Fig. 1.  Multi-view synthesis using SfM and IBR; dark gray: original 
camera path, red: virtual stereo cameras, blue: original camera of a multi-
view camera setup 
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scene from different viewpoints). The presented algorithm is 
applicable to generate stereo video in its basic mode [22], but 
it is also capable to generate multi-view video [23]. We will 
show that the approach is quite suitable for converting existing 
2D video material into multi-view with higher resolution [24]. 
To our knowledge it is the first time that an approach for 
generation of super-resolution multi-view video from 
monocular video is presented. 
 The proposed technique is performed in several stages. 
First, sparse 3D structure and camera parameters are estimated 
with SfM for the monocular video sequence (dark grey 
cameras in Fig. 1). Then, for each original camera position 
(white in Fig. 1) a corresponding multi-view set is generated 
(light grey in Fig. 1). This is done by estimating planar 
homographies (perspective transformations) to temporal 
neighboring views of the original camera path. Surrounding 
original views are used to generate the multiple virtual views 
with IBR. Hence, the computationally expensive calculation of 
dense depth maps is avoided. Moreover, the occlusion 
problem is almost nonexistent.  Whereas DIBR techniques 
always have to inter- or extrapolate disclosed parts of the 
images when shifting pixels according to their depth values, 
our approach utilizes the information from close views of the 
original camera path, i.e. occluded regions become visible 
within the sequence.   
 In the extended mode, the so called super-resolution mode, 
the temporal neighboring views are utilized for reconstructing 
a virtual stereo frame with a desired resolution higher than the 
original one. In order to do so, each pixel in the super-
resolution stereo frame should be located as close to the pixel 
raster in one of the neighboring views as possible for pixel 
warping, i.e. the effect of low pass filtering caused by bilinear 
warping is reduced. Another benefit of this approach is, as will 
be shown in Section V, the possible reduction of blur and 
coding artifacts. A complete overview of the proposed 
conversion system is illustrated in Fig. 2. 
 The organization of this paper is as follows: The next 
section describes the fundamentals of SfM as an initial step to 
estimate the camera path and to define virtual stereo cameras 

with constant parallax over time. In Section III and IV, the 
RSVS approach for stereo- and multi-view synthesis and the 
super-resolution extension are outlined, which are the main 
contributions of our work. Simulation results are presented in 
Section V. In Section VI, psycho-visual experiments are 
carried out to evaluate the performance of RSVS against 
standard conversion methods. The limitations of our approach 
are stated in Section VII. Finally, in Section VIII, the paper 
concludes with a summary and a discussion. 

II. STRUCTURE-FROM-MOTION FUNDAMENTALS  

 The general intention of SfM is the estimation of the 
external and internal camera parameters and the structure of a 
3D scene relative to a reference coordinate system. SfM 
requires a relative movement between a static scene and the 
camera.   
 Finding relations between the views in the video sequence is 
the initial step of our reconstruction process. The geometric 
relationship, also known as epipolar geometry, can be 
estimated with a sufficient number of feature correspondences 
between the views [28]. Once the images are related, the 
camera projection matrices are calculated using singular value 
decomposition [29]. If feature correspondences between the 
views and projection matrices are known, sparse 3D scene 
structure is estimated with triangulation [30], i.e. for a limited 
number of points the 3D coordinates are available as 
illustrated in Fig. 1. For a final refinement of the estimated 
parameters, bundle adjustment is often used [31].  
 The following subsections will give a more detailed 
description of the processing steps needed for our 3-D scene 
reconstruction approach. 

A. Feature Tracking and Keyframe Selection  

 Ambiguity is the major problem in finding feature 
correspondences in images. Such image features should be 
invariant or salient like points lying on edges, corners, line 
segments, contours, regions or even whole objects. The 
ambiguity decreases with the information content of the 
features, i.e. matching an object in two or more views is much 

Fig. 2.  System overview of the proposed solution 
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more reliable than matching a single point. However, narrow-
baseline applications mostly deal with feature points like 
corners [32][33], because the extraction has less complexity 
and the reliability is still very high. 

As long as the input is a sequence of consecutive frames, the 
Kanade- Lukas tracker (KLT) [34] successfully tracks features 
throughout the sequence. In [35] an extension of the KLT was 
introduced. 

Since a large baseline is needed to relate images, i.e. to 
estimate the epipolar geometry, consecutive video frames are 
not really suitable. Torr et al. [36] introduced the Geometric 
Robust Information Criterion (GRIC) as a robust model 
selection criterion to detect keyframes within a video 
sequence. Since the baseline between consecutive frames is 
small, a 2D motion model H (homography) can be used to 
transfer features from one frame to corresponding positions in 
a second frame. If the baseline increases during the tracking 
process and if the features are part of a 3D scene structure, the 
projection error increases as well, i.e. the 2D motion model 
must be upgraded to a 3D motion model F (epipolar 
geometry). Initializing the first frame of the sequence as 
keyframe and proceeding frame by frame, the next keyframe is 
selected if the GRIC value of the motion model F is below the 
GRIC value of H. The GRIC score is defined as: 

( ) kdneGRIC i 21
2 λλρ ++=∑ ,     (1) 

where ( )( )dree ii −= 3
222 ,min)( λσρ . The parameters are defined 

as follows: d is the dimension of the selected motion model (H 
has the dimension two and F dimension three), r is the 
dimension of the data (i.e. four for two views), k is the number 
of  the estimated model parameters (seven for F and eight for 
H), n is the number of tracked features, σ is the standard 
deviation of the error on each coordinate and ei is the distance 
between a feature point transferred through a planar 
homography H and the corresponding point in the target image 
or the Euclidian distance between the epipolar line of a feature 
point and its corresponding point in the target image 
(dependent on the selected model M): 

( )iii MmmDe ,'= .          (2) 

The parameters λ1, λ2, and λ3 are tuning parameters with λ1=2, 
λ2=log(4n) and λ3=2 [37]. 

Hence, the baseline distance between the selected keyframes 
is sufficient for the estimation of the epipolar geometry. 

B. Multi-view Reconstruction 

 The first step of our structure and motion recovery is the 
initial structure computation, i.e. taking the feature 
correspondences from the tracker into account, the 
fundamental matrix F is estimated between the first two 
keyframes of the sequence [28]. The random sample 

consensus (RANSAC) [38] is a robust algorithm which selects 
inliers for the computation of F. Afterwards, the projection 
matrices P1 and P2 are determined with singular value 
decomposition (SVD). The world frame is aligned with the 
first camera [39]. Once the projection matrices are known, the 

3D points of the feature correspondences are found via optimal 
triangulation as described in [30]. 
 The next step is the updating of the 3D structure and camera 
motion. First the camera projection matrix for the next 
keyframe is determined robustly using already existing 3D-2D 
feature correspondences as described in [39]. Then, the 3D 
structure and the camera matrix is refined with additional 2D-
2D feature correspondences between the actual frame and the 
previous one. This procedure is repeated for all keyframes. A 
final refinement of the structure and motion recovery is done 
via global nonlinear minimization techniques for all frames, 
also known as bundle adjustment [31]. The cost function used 
for the minimization is  
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where ),( ⋅⋅D  is the Euclidean distance between the 2D 

features mij and the re-projected 3D points Mj. 
 Since the performance of the reconstruction is heavily 
dependent on the initial structure computation, Imre et al. [40] 
introduced a prioritized sequential 3D reconstruction approach 
for a fast and reliable structure and motion computation. The 
keyframes are re-ordered according to a priority metric, and 
the frame pair with the highest priority metric is then used for 
the initial reconstruction. 

C. Self-Calibration 

 If the internal calibration parameters are unknown, which in 
general is the case for TV broadcast, home videos or cinema 
movies, a self-calibration procedure has to be carried out. A 
method that requires a pairwise calibration (i.e. the 
fundamental matrix) was introduced in [41]. It is based on the 
concept of the absolute conic. In [42] and [29] a stratified 
approach from projective to metric reconstruction was 
described. Finally, in [43] a self-calibration procedure was 
introduced that estimates the internal camera parameters via 
constraints on the essential matrices, i.e. the initial focal length 
α is estimated by the assumption of a unity aspect ratio αu = αv 
and the principal point at the center of the image. 

III.  REALISTIC STEREO- AND MULTI-VIEW SYNTHESIS 

 Once 3D structure and camera path are determined, multiple 
virtual cameras can be defined for each frame of the original 
video sequence as depicted in Fig. 1. A white camera 
corresponds to an original image of a video sequence and the 
light grey cameras represent its corresponding multiple virtual 
views. With the principles of IBR pixel values from temporal 
neighboring views can be projected to their corresponding 
positions in the virtual views. Thus, each of the virtual images 
is just a rendered version of original images. IBR requires 
establishment of homographies H between original and virtual 
views and is done as follows (see Fig. 3).  

The external parameters of the virtual cameras are defined 
by the desired multi-view setup. In case of a parallel setup, the 
rotation matrices of all multiple virtual views are identical to 
the rotation matrix of the corresponding original view, which 
is estimated by SfM as described before. The internal 
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parameters are set to be identical as well. Just the translation 
vector of each virtual view differs with respect to the world 
coordinate system and the virtual camera distance (see section 
III A. for details on calculation of translation). 
 Next, the 3D points M obtained by SfM can be projected 
into each virtual view as depicted in Fig. 3 resulting in image 
coordinates mmulti: 

,MPm multimulti =        (4) 

with 



 −= multimulti CIKRP

~
. K is the internal calibration 

matrix, R is the rotation matrix, I is a 3x3 identity matrix and 

multiC
~

 is the position of the camera center in inhomogeneous 

coordinates. 

A. Determination of the positions of the virtual views 

 The virtual parallel camera setup requires definition of the 
horizontal distance between the views, the so-called screen 

parallax values. Since the estimated camera path and 3D 
structure are only defined up to a scale, it is not clear at this 
stage if the camera is close to a small 3D model or far away 
from a huge 3D scenery. The average human eye distance is 
known with approximately 64 mm, and the virtual views shall 
have the same distance from each other. Therefore the process 
requires some initial interaction. The first frame of the 
sequence can be used to define the distance ts between the 
camera and the dominant scene in meters. Without loss of 
generality, the world coordinate system is located in the 
centroid of the sparse 3D point cloud. Thus, the absolute 
position of all cameras regarding the world coordinate system 
can be determined with 

,
1C

C
tC i
s

m
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          (5) 

where superscript m indicates the normalization in meters  and 
||C1|| is the vector norm of the first camera. The position of 
each corresponding virtual camera is   
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(n=1, 2, 3, …, N) and the camera projection matrix 
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N is the number of virtual views that should be generated for 
each frame of the sequence. With tx fixed, the screen parallax 
can be changed indirectly by setting ts, i.e. decreasing ts 
increases the screen parallax.  
 Once the positions of the virtual cameras are defined, the 
closest original views need to be determined to employ IBR. 
Therefore, the Euclidean distances between each virtual 
camera and all original cameras are calculated and sorted in 
ascending order.   

B. Determination of the homographies for IBR 

 Corresponding 2D points of original images mi and virtual 
images mmulti are related through the planar homography H 
(perspective transformation) between both views, if the 
distance (baseline) between the virtual camera and the original 
camera is small: 

.multiii mHm =         (8) 

H is a 3x3 matrix and therefore it contains 9 entries, but is 
defined only up to a scale: 
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Correspondences are available from the estimated sparse 3D 
structure, meaning that for a number of 3D points M the 
corresponding image positions mi and mmulti are known, the 
first directly from SfM and the second by calculation via eq. 4. 
Thus, the perspective transformation parameters of H can be 
estimated from eq. 8 with a minimum number of four point 
correspondences. Here, a linear estimation with all point 
correspondences was applied using singular value 
decomposition. In Hartley and Zisserman [29] many robust 
and non-linear alternatives are introduced. 
 Once the perspective transformation between a virtual view 
to be generated and the closest original view of the video 
sequence is estimated, all pixel values of the original image 
can be projected to their corresponding locations in the virtual 
image:  
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Fig. 3.  Stereo-/multi-view synthesis using planar transformations 
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Since these positions do not exactly correspond with the pixel 
grid, bilinear interpolation is performed on the pixel values.  
 In general, the closest original view does not cover the 
whole scene that should be visible with the virtual stereo 
camera as depicted in Fig. 4b. This is particularly the case 
when the orientation of both cameras differs significantly. To 
fill the missing parts of the virtual stereo image, we take 
additional surrounding views into account (see Fig. 4c and d).  

A final aspect of our iterative process is the fact that 
some stopping criteria have to be defined, because it is not 
always possible to fill the whole virtual stereo image. The first 
stopping criterion is the median transfer error εk for all k  
feature correspondences when calculating the homographies:  

( ),,with, ,, kmultiikikk
k

mHmDmedian =
∀

εε        (11) 

where ),( ⋅⋅D  is the Euclidean distance between 2D features 

mi,k of an original view and corresponding 2D features mmulti,k 
of the desired virtual view transferred through a planar-
homography. If this value is higher than a predefined threshold 
(e.g. 0.5 pixel), no additional views are considered.   
 The second criterion is the degree of image reconstruction. 
If more than 99.5 % of the virtual image is covered with pixel 

values from surrounding views, the virtual view synthesis is 
completed. 
 Fig. 5 shows 8 virtual views of the handheld sequence 
“Statue” generated with the proposed solution and its 
corresponding original view in the middle. 

IV.  SUPER-RESOLUTION STEREO- AND MULTI-VIEW 

SYNTHESIS 

 The previous section described our fundamental RSVS 
approach to convert a monocular video sequence into a stereo- 
or multi-view sequence for auto-stereoscopic displays or multi-
user 3D displays. Figure 4 demonstrates that in general more 
than one view is needed to set up a virtual stereo frame. Thus, 
the additional views can be used to increase the resolution of 
the stereo frame as well.  
 Spatial image super-resolution is a very intensively studied 
topic because it improves the inherent resolution limitation of 
captured low resolution images (LR images) [44]-[46]. The 
main objective is to construct one or more high resolution 
(HR) images by processing several LR images, captured by 
different cameras or in our case at different points in time. 
This can be achieved by estimating the inverse of the 
observation model which relates LR images to HR images [45] 
and usually consists of three stages: registration, interpolation, 
and restoration.  

A. Bilinear Warping 

 Depending on the desired resolution, a virtual super-
resolution stereo frame for each original frame has to be set 
up. Without loss of generality we increase the resolution of the 
original video sequence with factor 1.5, i.e. an input video in 
PAL format (720x576 pixel) results in a 1080x864 pixel stereo 
output video. 

Fig. 5.  Multi-view synthesis of the “Statue” sequence. Middle: original view, left: virtual left views (tx = -64, -128, -192, and -256 mm), right: virtual right 
views (tx = 64, 128, 192, and 256 mm) 

Fig. 4.  Padding of pixels with additional frames: a) original left view of the sequence “Dome”, b) virtual right view, only rendered with the closest view of the 
camera path, c) virtual right view using 30 and d) 62 frames of the original sequence. 
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 For each pixel in a stereo frame we determine the position in 
surrounding views as described in section III. The pixel which 
lies closest to the pixel raster has the best properties for 
bilinear warping, since the low pass characteristics, which is 
always present during bilinear warping, can be reduced. In Fig. 
6 an example of this process is given. Assume frame i is the 
closest original view to the virtual stereo view, the calculated 
pixel position is quite far from the quantized pixel raster, i.e. 
bilinear interpolation would increase the low pass effect. In 
frame i+1 the pixel lies almost directly on the pixel raster. 
Hence, the pixel value is quite more suitable for warping 
because of low pass effect reduction. 

B. Smoothness Constraint for Pixel Warping  

 The previous subsection indicated that the pixel closest to 
the pixel raster in one of the surrounding views is most 
suitable for pixel warping. This is not always true if the pixel 
belongs to a view far from the virtual stereo view, because the 
planar transformation errors increase with the baseline length 
between the views. To avoid this, we consider a smoothness 
constraint for pixel warping. 
 First, we calculate the pixel values in all desired views (e.g. 
8 closest views) with bilinear interpolation. Then we determine 
the median of this pixel values with 

),,(),( yxIyxI i
i

med
∀

= median        (12) 

where I is the color value of the pixel in each frame i. Pixel 
values with a high absolute deviation from the median (i.e. 
statistically unreliable) are removed and not considered in 
further processing steps. Finally, for the remaining pixels, we 
take the one which lies closest to the pixel raster for bilinear 
warping. 
 A further enhancement of the super-resolution module might 
be achieved if bi-cubic interpolation is applied for pixel 
warping instead of bilinear interpolation. However, a 
significant performance gain is not expected since the 
interpolation effects are heavily reduced by choosing the best 
pixel locations. 

V. SIMULATION RESULTS  

 Two example figures show the performance of the super-
resolution mode of our approach. In  Fig. 7, a super-resolution 
virtual stereo frame (size 1080x864 pixels) of the “Statue”-
sequence is presented. Three close-ups should stress the 
difference between the super-resolution frame and an up-
sampled frame using Lanczos-filtering (original size was 
720x576 pixels). Fig. 7d shows some typical artifacts when 
dealing with interlaced PAL video and up-sampling: Sawtooth 
pattern can be noticed along edges resulting from de-
interlacing.  Furthermore, it can be seen that super-resolution 
has two more advantages than just up-sampling the virtual 
stereo frame: Ghosting effects resulting from the compression 
and motion blur caused by very unsteady camera movements 
are strongly reduced in the super-resolution case as well (see 
close-ups in Fig. 7).   
 Fig. 8 shows an up-sampled virtual stereo frame using 
Lanczos-filtering and a super-resolution virtual stereo frame 
(each of size 1080x864 pixels) of the “Dome”-sequence. Four 
close-ups illustrate the reduction of the previous mentioned 
artifacts on sequence “Dome”.  Especially, the sawtooth 
pattern was significantly reduced in the super-resolution mode 
(Fig. 8c,g,i). Furthermore, aliasing artifacts become more 
visible in the up-sampled frame, which can be seen on the top 
of the right arc in Fig. 8e.   

VI. PSYCHO-VISUAL EXPERIMENTS 

 Two subjective quality tests were carried out to stress the 
performance of RSVS against standard 2D/3D conversion 
approaches like DIBR and time-shift. The test conditions are 
standard conform to the ITU recommendations [47]. In the 
first session of the experiment, 15 subjects were asked to rate 
the quality impression of 25 real test sequences. Since no 
ground truth data was available (the test sequences were 
originally captured with a single camera), a single stimulus 

(SS) method was applied [48].  
In a second session, again 15 subjects were asked to rate the 

quality impression of three synthetic test sequences rendered 

Fig. 6.  Super-resolution stereo-/multi-view synthesis 

Fig. 7.  Super-resolution stereo view synthesis of the “Statue”-sequence 
(1080x864 pixels). a) super-resolution stereo view. b), d), f) close-up of the 
up-sampled and c), e), g) close-up of the super-resolution stereo frame 
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from a 3D model with a parallel stereo camera rig. Since  
ground truth data could always be used as reference, a double 

stimulus continuous quality scale (DSCQS) method was 
applied [48].  

A.  Subjective Quality Test (SS method) 

 In the first session of the experiment, 15 subjects were asked 
to rate the quality impression of 25 test sequences. 18 of the 
sequences were taken from the BBC documentation “Planet 
Earth” and seven were captured with a handheld camera 
(Canon XLs 1, progressive scan, DV coded). Two example 
pictures are illustrated in Fig. 9. Whereas the BBC sequences 
have a very smooth and linear camera path, the camera motion 
of the handheld sequences was very unsteady. All test 
sequences have similar (almost static) content. 

Each of the sequences was displayed in three different 
modes: 2D (the same sequence is presented to the left and right 
eye), 3D converted with RSVS and 3D using a time-shift (i.e. a 
time-delay of 4 to 10 frames was applied to the left or right eye 
sequence). The presentation period of each test sequence was 
about 10 seconds followed by the voting period of 10 seconds, 
where the assessors had to rate the overall quality of the 
previous displayed test sequence.   

 The evaluation results, in terms of the average mean 

opinion scores (MOS) and the standard deviations (S.D.), are 
presented in TABLE I. In Fig. 11 a diagram of the average 
mean opinion scores with 95% confidence intervals for all test 
sequences is displayed.  

The overall ratings indicate that 3D converted with RSVS 
has the best quality impression with a MOS of 7.485 on all 
assessors. Due to a smooth horizontal and linear camera 
motion, the ratings for the BBC sequences are very similar. 
Here, a time-shift yields almost the same results as RSVS, 
although a small vertical parallax could be noticed for some of 
the time-shifted sequences. For the handheld sequences, RSVS 
outperforms time-shift significantly. Here, the vertical parallax 
in the time-shifted sequences, caused by unsteady camera 
motion, was quite annoying to all test subjects. Thus, the test 

demonstrates the flexibility of RSVS against simple time-shift, 
which is heavily restricted to horizontal camera movements.  

Although a 3D presentation of the test sequences was 
always preferred by the subjects, the 2D mode got similar 
results as RSVS. One reason is the appearance of cross talk in  
the 3D sequences resulting from imperfect image separation 
[49], i.e. the left-eye view leaks through to the right-eye view 
and vice versa. This effect is naturally not visible in the 2D 
mode. Thus, the stereoscopic depth perception has both a 
positive contribution to the overall image quality and a 
negative effect caused by cross talk. 

TABLE I 
SS METHOD: AVERAGE MEAN OPINION SCORES AND STANDARD DEVIATIONS 

Data set 
2D 3D /RSVS 3D / time-shift 

MOS S.D. MOS S.D. MOS S.D. 

BBC 7.707 1.663 7.830 1.703 7.819 1.792 

handheld 6.390 1.550 6.600 1.858 2.971 1.632 

overall 7.339 1.631 7.485 1.746 6.461 1.747 

 

Fig. 10.  Example pictures of the three synthetic sequences. Left: 
“TUBroom1”, middle: “TUBroom2”, right: “TUBroom3” 

Fig. 9. Example pictures of the test sequences. Left: “Caves09” from the 
BBC-documentation “Planet Earth”, series “Caves” (720x405 pixels). 
Right: handheld sequence “Charlottenburg02” (720x576 pixels) 

Fig. 8.  Super-resolution stereo view synthesis of the “Dome”-sequence (1080x864 pixels). a) virtual stereo view up-sampled and b) super-resolution stereo 
view. c), e), g), i) close-up of the up-sampled and d), f), h), j) close-up of the super-resolution frame 



 8

B. Subjective Quality Test (DSCQS method) 

In the second session of the experiment, 15 subjects were 
asked to rate the quality impression of three synthetic test 
sequences (see Fig. 10) rendered from the same 3D model with 
different perspectives and camera motions, which have 
different critical influences on the conversion algorithms and 
even on the reference sequences. Each of the sequences was 
displayed in five different 3D modes converted with: time-
shift, standard DIBR [15] (one view remains original), DIBR 
LR1 (left and right view are generated from the original view), 
standard RSVS (one view remains original) and RSVS LR1 
(left and right view are generated from surrounding original 
views).  

In the first sequence the camera moved partly in a forward 
direction, which is critical for the synthesis with RSVS. The 
second sequence has a slightly vertical motion, so that some 
vertical parallax is expected for time-shift. Finally, the third 
sequence has a large foreground object passing the image 
boundaries, which is even critical for the reference parallel 
stereo rig. Here, a break of depth cues is expected since a 
parallel camera rig produces only negative parallax, with the 
objects coming out of the screen. When passing the image 
boundaries, these objects should be located behind the screen 
(positive parallax) with respect to the monocular depth cues.  

 
1 The parallax value from left to right view is identical to the standard 

approach 

TABLE II 
DSCQS METHOD: AVERAGE DIFFERENCE MEAN OPINION SCORES AND 

STANDARD DEVIATIONS [DMOS (S.D.)] 

Data set Time-shift DIBR DIBR LR RSVS RSVS LR 

TUBroom1 
0.35  

(1.77) 
1.35 

(1.72) 
3.27 

(1.10) 
1.16 

(1.71) 
0.64 

(1.42) 

TUBroom2 
0.65  

(1.01) 
2.12 

(1.78) 
2.30 

(1.59) 
0.10 

(1.49) 
1.06 

(1.43) 

TUBroom3 
0.02  

(0.94) 
1.73  

(1.50) 
2.26 

(2.38) 
-0.55 
(1.16) 

0.06 
(0.72) 

overall 
0.34 

(1.32) 
1.73 

(1.70) 
2.61 

(1.83) 
0.24 

(1.63) 
0.58 

(1.30) 

 
According to the DSCQS test conditions, the subjects were 

presented with a series of pairs of stereoscopic sequences. 
Each converted sequence (test) was related twice successively 
to its error free version (reference). The time slot for each 
stereoscopic sequence was 9 seconds and the time between 
two sequences was 2 seconds. The persons recorded their 
assessment of the quality of both sequences (reference and 
test) on two continuous graphical scales for each test period. A 
measurement of length makes the subjective score available, 
which is within a range of 0 to 10. 
 The evaluation results, i.e. the average difference mean 

opinion scores (DMOS) and the standard deviations (S.D.), 
are presented in TABLE II. In Fig. 12 a diagram of the average 
mean opinion scores with 95% confidence intervals for all test 
sequences is displayed.  

The subjective quality test shows that our proposed 
approaches yield excellent results. Starting with the overall 
ratings, the sequences converted with standard RSVS has the 
best quality impression with a DMOS of 0.24. Even time-shift 
achieved good results for all test sequences, although, as 
mentioned in the previous subsection, vertical parallax and 
shear distortion [49] could be noticed. For the “TUBroom 1”-
sequence time-shift even outperforms all other conversion 
methods. The good performance of time-shift results from two 
significant factors. First, all test sequences have almost a 
horizontal and linear camera movement, which is necessary for 
a simple delay in time. Second, time-shift is the only 
conversion method that uses two original frames of the 
sequence to generate a stereoscopic depth perception. Some of 
the subjects noticed a blurring effect on the sequences, which 
is always present in the virtual views of the other conversion 
methods (resulting from the bilinear interpolation). This can 
also be seen in the ratings of the DIBR LR and RSVS LR 
approaches where both stereoscopic views are virtually 
synthesized. Only for the “TUBroom 1”-sequence RSVS LR 
outperforms standard RSVS. Here, the camera motion was 
quite critical for RSVS (see section VII for details on the 
limitations). Namely, the camera moved temporarily in a 
forward direction. Thus, the baseline increases between a 
virtual view and a neighboring original view resulting in larger 
transformation errors. 

Finally, RSVS has a negative DMOS for the “TUBroom 3”-  
sequence, i.e. most of the test subjects rated the test sequence 
better than the reference. Here, the reference sequence had a 
break in the depth cues: The cube in the foreground (see Fig. 

Fig. 11.  Average results of the SS-method. Average perceived subjective 
quality impression (MOS) with 95% confidence intervals  

Fig. 12.  Average results of the DSCQS-method. Average perceived 
subjective quality impression (DMOS) with 95% confidence intervals 
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10) went out of the image boundary, meaning, the cube must 
be located behind the image screen (monocular depth cue). 
Since a parallel camera setup was used for the reference 
sequence resulting in a negative parallax, the cube is located in 
front of the screen (stereoscopic depth cue). This break of 
depth cue is also present in the test sequence, but its effect was 
reduced by a smaller negative parallax and an additional 
positive parallax. 

Although the depth range between fore- and background is 
quite high, the planar transformation errors of RSVS are still 
small and not visible within the sequence.    

VII. LIMITATIONS 

The RSVS approach presented has some limitations. The 
most important one is that the scene has to be static, i.e. 
moving objects within the scene would disturb the depth 
perception. Furthermore, there are restrictions on camera 
motion. If the camera moves only in a forward- or backward 
direction, this approach for virtual view synthesis fails. The 
case of a camera movement in up- and down direction can be 
handled by transposing the frames by 90 degrees. A final 
limitation is that a larger screen parallax increases the 
divergence between the camera path and the position of the 
virtual views as depicted in Fig. 1 on the bottom left. Hence, a 
planar transformation might not be valid any longer if the 
scene consists of fore- and background objects with different 
depths, i.e. the larger the depth range of the scene is, the more 
transformation errors can occur if the baseline length between 
virtual an original views increases. 

VIII. SUMMARY AND CONCLUSIONS 

 This paper presented a new approach for generation of 
super-resolution stereo and multi-view video from monocular 
video, i.e. we extended our previous work on RSVS with a 
super-resolution mode. To our knowledge it was the first time 
that generation of super-resolution multi-view video from 
monocular video was addressed. Thus, the algorithm is 
suitable for offline content creation for conventional and 
advanced 3D display systems with minimum user assistance. 
 The main advantage of this approach over available DIBR 
algorithms is that planar transformations are utilized to 
generate the virtual views from original views, i.e. a 
computational expensive and error prone dense depth 
estimation is not needed. Furthermore, the occlusion problem, 
which is always present in dense depth estimation, does almost 
not exist. Another advantage is that photo realism is achieved 
without additional operations, since the photometric properties 
of a scene are determined entirely by the original frames of the 
reference sequence. 
 The algorithm was tested on several data sets. The 
simulation results show the remarkable performance of the 
conversion process. Especially the super-resolution mode 
reduced significantly de-interlacing-, aliasing-, ghosting- and 
blurring artifacts.  
 Furthermore, we evaluated standard RSVS with two 
subjective quality tests. In the first test RSVS was compared 
with a 2D presentation mode and a 3D presentation mode 

utilizing time-shift. Although a slightly vertical parallax was 
noticed in the time-shift mode, which naturally causes eye-
strain, the results compared with RSVS were very similar. 
Since the duration of typical video is much longer, a further 
study of this stereoscopic impairment has to be carried out. 
 In a second subjective test, five different conversion 
methods were applied to three synthetic test sequences. 
Although ground truth depth maps for DIBR were available, 
RSVS significantly outperforms DIBR. Usually, existent video 
material to be converted into stereoscopic 3D has no depth 
maps available. Hence, dense depth estimation for each frame 
has to be applied, which is, as stated in Section I, still an error 
prone task and computationally very expensive. Nevertheless, 
if depth maps are available, DIBR has no restrictions 
concerning video content or camera motion. Furthermore, the 
synthesis of virtual views is less complex than using RSVS 
which heavily depends on the camera motion. Only for 
horizontal panning with almost no camera rotations, where 
RSVS just needs one original view to generate the desired 
virtual view, DIBR and RSVS have the same complexity.  
 Despite the restrictions mentioned in the previous section, 
the presented algorithm is highly attractive as a tool for user-
assisted 2D-3D conversion and 3D production systems. High 
quality conversion and post-production is still done using 
semi-automatic software systems. Here the presented 
automatic algorithm heavily reduces the manual workload for 
many sequences. 
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