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Abstract— This paper presents a new approach for generation
of super-resolution stereoscopic and multi-view vido from
monocular video. Such multi-view video is used foinstance with
multi-user 3D displays or auto-stereoscopic displaywith head-
tracking to create a depth impression of the obsemd scenery.
Our approach is an extension of the realistic stemview synthesis
(RSVS) approach which is based on structure from m@mn
technigues and image-based rendering to generate ehdesired
stereoscopic views for each point in time. Subjee® quality
measurements with 25 real and 3 synthetic sequencesere
carried out to test the performance of RSVS againstimple time-
shift and depth image-based rendering (DIBR). Our pproach
heavily enhances the stereoscopic depth percepti@md gives a
more realistic impression of the observed scenerySimulation
results applying super-resolution show that the imge quality can
further be improved by reducing motion blur and comrpression
artifacts.
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structure-from-motion,
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imaging, 2D/3D
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I. INTRODUCTION

XTENDING visual communication to the third dimensio

by providing the user with a realistic depth petiap of
the observed scenery instead of flat 2D images been
investigated over decades. Recent progress irecetasearch
areas may enable various 3D applications and sgsterthe
near future [1]. Especially, 3D display technolagymaturing
and entering professional and consumer marketenCtie
content is created directly in some suitable 3Dnfr On the
other hand the conversion of existing 2D contett super-
resolution 3D is important for content owners. Mes/imay be
reissued in 3D in the future.

Many fundamental algorithms have been developed
reconstruct 3D scenes from monocular video seqsefiie
[24]. These algorithms can roughly be divided inteo
categories: methods that tend to create a complzimodel of
the captured scene [2]-[10], and methods that jesider
stereoscopic views [11]- [24].

Available structure from motior(SfM) techniques from the
first category estimate the camera parameters parses 3D
structure quite well, but they fail to provide derend accurate
3D modeling as it is necessary to render high gueaiews.
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Fig. 1. Multi-view synthesis using SfM and IBR;rkaray: original
camera path, red: virtual stereo cameras, bluginali camera of a multi-
view camera setup

For the second categoryepth-image-based rendering
(DIBR) [11]-[17] seems to be the most promisinghtgique
both for stereoscopic view synthesis and for trassion in
3D-TV broadcast systems [25][26]. DIBR approachesder
new virtual views via dense depth maps for eaciméraf the
sequence by shifting image pixels according torthssigned
depth. On the other hand, dense depth estimatiatilisan
error prone task and computationally very expendivgl7] a
semi-automatic approach for dense depth estimatias
introduced using a machine learning algorithm (ML#&Y
assigned keyframes and depth tweening between fitzeses.

Other approaches, e.g. [18][19], are using motiaralax
or spatio-temporal interpolation to generate thesirde
stereoscopic views. Ross [20] introduced a verypknbut
gor some video sequences) effective technique
?ereoscopic depth impression using binocular ddiaally,
in [21] planar transformations on temporal neiglihgviews
are utilized to virtually imitate a parallel stereamera rig.
But, in any case, time consistency along the sempés
heavily dependent on the 3D scene, since a stégeis not
correctly modeled.

In this paper, we present a new approach for g¢iner of
super-resolution stereo and multi-view video froranmcular
video based orealistic stereo view syntheqiRSVS) [22]. It
combines both the powerful algorithms of SfM [2]dathe
idea ofimage-based renderinBR) [27] to achieve photo-
consistency without relying on dense depth estionati

Most available 3D display systems rely on 2 vidatereo
video) to create a depth impression. However, raokeanced
systems use multiple views (e.g. 8 views showirg shme
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Fig. 2. System overview of the proposed solution

scene from different viewpoints). The presenteditigm is
applicable to generate stereo video in its basideri@2], but
it is also capable to generate multi-view video][2&e will
show that the approach is quite suitable for caimgexisting
2D video material into multi-view with higher restibn [24].
To our knowledge it is the first time that an apgwio for
generation of super-resolution multi-view video nfro
monocular video is presented.
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with constant parallax over time. In Section IlldatV, the
RSVS approach for stereo- and multi-view synthesid the
super-resolution extension are outlined, which e main
contributions of our work. Simulation results aregented in
Section V. In Section VI, psycho-visual experimerase
carried out to evaluate the performance of RSVSinaga
standard conversion methods. The limitations ofapproach
are stated in Section VII. Finally, in Section VIthe paper

The proposed technique is performed in severalesta concludes with a summary and a discussion.

First, sparse 3D structure and camera parametersstimated

with SfM for the monocular video sequence (darkygre Il.

cameras in Fig. 1). Then, for each original canmgoaition
(white in Fig. 1) a corresponding multi-view setgsnerated
(light grey in Fig. 1). This is done by estimatimdanar
homographies (perspective
neighboring views of the original camera path. Sunding
original views are used to generate the multiptéual views
with IBR. Hence, the computationally expensive gkltion of
dense depth maps is avoided. Moreover,
problem is almost nonexistent. Whereas DIBR tegpies
always have to inter- or extrapolate disclosed spait the
images when shifting pixels according to their tiepalues,
our approach utilizes the information from closews of the
original camera path, i.e. occluded regions becwois®ble

within the sequence.

In the extended mode, the so called super-resaolutiode,
the temporal neighboring views are utilized foraestructing
a virtual stereo frame with a desired resolutiaghkr than the
original one. In order to do so, each pixel in theper-
resolution stereo frame should be located as ¢toslee pixel
raster in one of the neighboring views as possibiepixel
warping, i.e. the effect of low pass filtering cadsby bilinear
warping is reduced. Another benefit of this apploee as will
be shown in Section V, the possible reduction afr kdnd
coding artifacts. A complete overview of the progods
conversion system is illustrated in Fig. 2.

The organization of this paper is as follows: Tiext
section describes the fundamentals of SfM as dialistep to
estimate the camera path and to define virtuabsteameras

transformations) to tealpo

STRUCTUREFROM-MOTION FUNDAMENTALS

The general intention of SfM is the estimation tbe
external and internal camera parameters and thetste of a
3D scene relative to a reference coordinate systefil
requires a relative movement between a static seedethe
camera.

Finding relations between the views in the videguence is

the initial step of our reconstruction process. Te®metric
the ~ocalusipg|ationship, also known as epipolar geometry, dzm

estimated with a sufficient number of feature cgpendences
between the views [28]. Once the images are relates
camera projection matrices are calculated usinguin value
decomposition [29]. If feature correspondences betwthe
views and projection matrices are known, sparses8éne
structure is estimated with triangulation [30], ffer a limited
number of points the 3D coordinates are availabte a
illustrated in Fig. 1. For a final refinement ofetlestimated
parameters, bundle adjustment is often used [31].

The following subsections will give a more detdile
description of the processing steps needed for3eDrscene
reconstruction approach.

A. Feature Tracking and Keyframe Selection

Ambiguity is the major problem in finding feature
correspondences in images. Such image featureddsheu
invariant or salient like points lying on edgesrras, line
segments, contours, regions or even whole objette
ambiguity decreases with the information content toé
features, i.e. matching an object in two or moeawad is much



more reliable than matching a single point. Howewarrow-
baseline applications mostly deal with feature fmifike
corners [32][33], because the extraction has lessptexity
and the reliability is still very high.

As long as the input is a sequence of consecutareds, the
Kanade- Lukas tracker (KLT) [34] successfully trad&atures
throughout the sequence. In [35] an extension @khT was
introduced.

Since a large baseline is needed to relate imagesto
estimate the epipolar geometry, consecutive vidamés are
not really suitable. Torr et al. [36] introducecke teometric
Robust Information Criterion (GRIC) as a robust mlod
selection criterion to detect keyframes within adeg
sequence. Since the baseline between consecusiveedr is

small, a 2D motion modeH (homography) can be used to

transfer features from one frame to correspondgjtions in
a second frame. If the baseline increases duriagréicking
process and if the features are part of a 3D ss&neture, the
projection error increases as well, i.e. the 2Diomtmodel
must be upgraded to a 3D motion model (epipolar
geometry). Initializing the first frame of the semee as
keyframe and proceeding frame by frame, the neyfr&me is
selected if the GRIC value of the motion moBéés below the
GRIC value of H. The GRIC score is defined as:

GRIC=

r(e,z) + /dn + /K, (1)

where 7 (&) = min(qz/sz, /5(r - d)) The parameters are defined

as follows: d is the dimension of the selected armtnodel H
has the dimension two anB dimension three), r is the
dimension of the data (i.e. four for two views)skhe number
of the estimated model parameters (severifand eight for
H), n is the number of tracked features,is the standard
deviation of the error on each coordinate and ¢he distance

3D points of the feature correspondences are feimdptimal
triangulation as described in [30].

The next step is the updating of the 3D strucaune camera
motion. First the camera projection matrix for thext
keyframe is determined robustly using already &gs8D-2D
feature correspondences as described in [39]. Tthen3D
structure and the camera matrix is refined withitamithl 2D-
2D feature correspondences between the actual fesmtheéhe
previous one. This procedure is repeated for gifrkenes. A
final refinement of the structure and motion reagvie done
via global nonlinear minimization techniques fot fihmes,
also known as bundle adjustment [31]. The costtfanaised
for the minimization is

min D(m,,PM,)?, 3)

Mg ja

where D(:,3) is the Euclidean distance between the 2D

featuresm; and the re-projected 3D poiri.

Since the performance of the reconstruction isvihea
dependent on the initial structure computation elmat al. [40]
introduced a prioritized sequential 3D reconstarcthpproach
for a fast and reliable structure and motion comapomn. The
keyframes are re-ordered according to a priorityricieand
the frame pair with the highest priority metricti@en used for
the initial reconstruction.

C. Self-Calibration

If the internal calibration parameters are unknowhich in
general is the case for TV broadcast, home videasnema
movies, a self-calibration procedure has to beiedrout. A
method that requires a pairwise calibration (i.de t
fundamental matrix) was introduced in [41]. It Bsked on the
concept of theabsolute conicIn [42] and [29] a stratified
approach from projective to metric reconstructiorasw

between a feature point transferred through a plandescribed. Finally, in [43] a self-calibration pedure was
homographyH and the corresponding point in the target imagtroduced that estimates the internal camera peters via

or the Euclidian distance between the epipolar ¢iha feature
point and its corresponding point in the target gma
(dependent on the selected moldig

g =D(m',Mm). (2)

The parameters,, /5, and/ ; are tuning parameters with=2,
/,=log(4n) and/ =2 [37].

Hence, the baseline distance between the seleetdchines
is sufficient for the estimation of the epipolaogeetry.

B. Multi-view Reconstruction

The first step of our structure and motion recgvisr the
initial  structure computation, i.e. taking the feat

constraints on the essential matrices, i.e. tha&lriocal length
is estimated by the assumption of a unity aspai r,
and the principal point at the center of the image.

"

Once 3D structure and camera path are determingitiple
virtual cameras can be defined for each frame efdtiginal
video sequence as depicted in Fig. 1. A white camer
corresponds to an original image of a video sequemd the
light grey cameras represent its correspondingipheltirtual
views. With the principles of IBR pixel values fraimmporal
neighboring views can be projected to their comesing
positions in the virtual views. Thus, each of tlrtual images

REALISTIC STEREO- AND MULTI-VIEW SYNTHESIS

correspondences from the tracker into account, the just a rendered version of original images. |BRjuires
fundamental matrixF is estimated between the first twoestablishment of homographiesbetween original and virtual
keyframes of the sequence [28]. Thandom sample yiews and is done as follows (see Fig. 3).
consensu¢gRANSAC) [38] is a robust algorithm which selects  The external parameters of the virtual camerasiafieed
inliers for the computation of. Afterwards, the projection by the desired multi-view setup. In case of a paraktup, the
matrices P, and P, are determined with singular valuerotation matrices of all multiple virtual views aidentical to
decomposition (SVD). The world frame is alignedhwihe the rotation matrix of the corresponding originaw, which
first camera [39]. Once the projection matriceslarewn, the s estimated by SfM as described before. The iatern



parameters are set to be identical as well. Jestrdnslation
vector of each virtual view differs with respect ttee world
coordinate system and the virtual camera distasee $ection
Il A. for details on calculation of translation).

Next, the 3D point$vl obtained by SfM can be projected
into each virtual view as depicted in Fig. 3 rasgltin image
coordinatesnyyi:

Mt = PouiiM 4)

with Poui =KR 1 [- Cui . K is the internal calibration

matrix, R is the rotation matrix} is a 3x3 identity matrix and

Cruni IS the position of the camera center in inhomogese
coordinates.

A. Determination of the positions of the virtual views

The virtual parallel camera setup requires dediniof the
horizontal distance between the views, the so-dalgeen
parallax values. Since the estimated camera path and 3D
structure are only defined up to a scale, it isclear at this
stage if the camera is close to a small 3D moddaoaway B. Determination of the homographies for IBR
from a huge 3D scenery. The average human eyendésta Corresponding 2D points of original imagesand virtual
known with approximately 64 mm, and the virtualwseshall imagesm,,; are related through the planar homography
have the same distance from each other. Therdferprocess (perspective transformatiynbetween both views, if the
requires some initial interaction. The first franwé the distance (baseline) between the virtual camerattamdriginal
sequence can be used to define the distanbetiveen the camera is small:
camera and the dominant scene in meters. Withsg &
generality, the world coordinate system is locatedthe m =Hm, - (8)
centroid of the sparse 3D point cloud. Thus, theohle
position of all cameras regarding the world cooaténsystem H s a 3x3 matrix and therefore it contains 9 esfrimit is

Fig. 3. Stereo-/multi-view synthesis using plamansformations

can be determined with defined only up to a scale:
_+ G
Cim = tSH , (5) ml hlZ hl3
H = h21 h22 h23 (9)
where superscript indicates the normalization in meters and h, hy, hy
[IC4]| is the vector norm of the first camera. The tpmsiof . .
each corresponding virtual camera is Correspondences are available from the estimat@se3D
structure, meaning that for a number of 3D poiktsthe
*+t, corresponding image positiomg and m,,,; are known, the

=C"+RIx 0 , witht, =nx64mm, (6) first directly from SfM and the second by calcudatvia eq. 4.

Thus, the perspective transformation parametedd can be

0 estimated from eqg. 8 with a minimum number of foaint

(n=1, 2, 3, ..., N) and the camera projection matrix correspondences. Here, a Iingar estimation .With palint
correspondences was applied using singular value

decomposition. In Hartley and Zisserman [29] maabust

and non-linear alternatives are introduced.

Once the perspective transformation between aalistiew

N is the number of virtual views that should be gated for to be generated and the closest original view ef vfdeo

each frame of the sequence. WitHixed, the screen parallax sequence is estimated, all pixel values of theimalgimage

can be changed indirectly by setting te. decreasingst can be projected to their corresponding locationhé virtual

cn

i,multi

Rt =KR 1 [- G - 7)

increases the screen parallax. image:
Once the positions of the virtual cameras arendefi the
closest original views need to be determined toleym[BR. gz Zotauray
Therefore, the Euclidean distances between eactualir l+cu+c,v (10)
camera and all original cameras are calculatedsantgkd in e by +bu+h,v

ascending order. 1+cU+CV



Fig. 4. Padding of pixels with additional frameyoriginal left view of the sequence “Dome”, b)tuial right view, only rendered with the closestwief the
camera path, c) virtual right view using 30 an@&®@)rames of the original sequence.

Fig. 5. Multi-view synthesis of the “Statue” seque. Middle: original view, left: virtual left viesv( = -64, -128, -192, and256 mm), right: virtual rigt

views (k= 64, 128, 192, and 256 mm)

with

Since these positions do not exactly corresponid thi¢ pixel
grid, bilinear interpolation is performed on thagdivalues.

In general, the closest original view does notetothe
whole scene that should be visible with the virtstdreo
camera as depicted in Fig. 4b. This is particulahly case
when the orientation of both cameras differs sigaiftly. To
fill the missing parts of the virtual stereo imagee take
additional surrounding views into account (see Egand d).

A final aspect of our iterative process is the fHwit
some stopping criteria have to be defined, bec#use not
always possible to fill the whole virtual sterecaige. The first
stopping criterion is the median transfer errgrfor all k
feature correspondences when calculating the haapbdggs:

mediang, ,  with €, =D(M ., H Mo ) (11)

values from surrounding views, the virtual view thasis is
completed.

Fig. 5 shows 8 virtual views of the handheld segee
“Statue” generated with the proposed solution amsl i
corresponding original view in the middle.

IV. SUPERRESOLUTIONSTEREO- AND MULTI-VIEW
SYNTHESIS

The previous section described our fundamental RSV
approach to convert a monocular video sequenceaistereo-
or multi-view sequence for auto-stereoscopic digptar multi-
user 3D displays. Figure 4 demonstrates that ireigémmore
than one view is needed to set up a virtual stéeeoe. Thus,
the additional views can be used to increase tbelugon of
the stereo frame as well.

Spatial image super-resolution is a very intergigtudied
topic because it improves the inherent resolutiontdtion of
capturedlow resolutionimages (LR images) [44]-[46]. The
main objective is to construct one or mdrigh resolution
(HR) images by processing several LR images, cegtlny
different cameras or in our case at different it time.
This can be achieved by estimating the inverse taf t
observation model which relates LR images to HRyiesq45]
and usually consists of three stages: registratitarpolation,
and restoration.

where D(3,3) is the Euclidean distance between 2D features

m of an original view and corresponding 2D featurgg, «
of the desired virtual view transferred through knpr-
homography. If this value is higher than a predsithreshold
(e.g. 0.5 pixel), no additional views are considere

The second criterion is the degree of image redoaction.
If more than 99.5 % of the virtual image is covevdth pixel

A. Bilinear Warping

Depending on the desired resolution, a virtual esup
resolution stereo frame for each original frame tmabe set
up. Without loss of generality we increase the kg of the
original video sequence with factor 1.5, i.e. apuinvideo in
PAL format (720x576 pixel) results in a 1080x86x4gbistereo
output video.



Fig. 6. Supe-resolution stere-/multi-view synthesi

For each pixel in a stereo frame we determingtsition in
surrounding views as described in section Ill. Phel which
lies closest to the pixel raster has the best ptigge for
bilinear warping, since the low pass charactesstiehich is
always present during bilinear warping, can be ceduln Fig.
6 an example of this process is given. Assume fraimehe
closest original view to the virtual stereo vieWwe tcalculated
pixel position is quite far from the quantized pixaster, i.e.
bilinear interpolation would increase the low paffect. In
frame i+1 the pixel lies almost directly on the pixel st
Hence, the pixel value is quite more suitable farping
because of low pass effect reduction.

B. Smoothness Constraint for Pixel Warping

The previous subsection indicated that the pixe$est to
the pixel raster in one of the surrounding viewsnisst
suitable for pixel warping. This is not always trifiehe pixel
belongs to a view far from the virtual stereo videcause the
planar transformation errors increase with the lrseséength
between the views. To avoid this, we consider acthmess
constraint for pixel warping.

First, we calculate the pixel values in all degivéews (e.g.
8 closest views) with bilinear interpolation. Thea determine
the median of this pixel values with

lmed(xv y) = meqlan li(x! Y)r (12)
wherel is the color value of the pixel in each framePixel
values with a high absolute deviation from the raadfi.e.
statistically unreliable) are removed and not coesd in
further processing steps. Finally, for the remajnaixels, we
take the one which lies closest to the pixel rakietbilinear
warping.

A further enhancement of the super-resolution redught
be achieved if bi-cubic interpolation is appliedr fpixel
warping instead of bilinear interpolation. Howeveg
significant performance gain is not expected sirtbe
interpolation effects are heavily reduced by chogghe best
pixel locations.

Fig. 7. Super-resolution stereo view synthesisttaf “Statue”sequenc
(1080x864 pixels). a) super-resolution stereo vieyy.d), f) closedp of the
up-sampled and c), e), g) clup of the sup¢«resolution stereo frar

V. SIMULATION RESULTS

Two example figures show the performance of thgesu
resolution mode of our approach. In Fig. 7, a supsolution
virtual stereo frame (size 1080x864 pixels) of t&tatue”-
sequence is presented. Three close-ups shoulds sthes
difference between the super-resolution frame andup-
sampled frame using Lanczos-filtering (original esizvas
720x576 pixels). Fig. 7d shows some typical artfaghen
dealing with interlaced PAL video and up-sampliBgwtooth
pattern can be noticed along edges resulting froea d
interlacing. Furthermore, it can be seen that istgsolution
has two more advantages than just up-sampling tteak
stereo frame: Ghosting effects resulting from tbempression
and motion blur caused by very unsteady camera ments
are strongly reduced in the super-resolution casee (see
close-ups in Fig. 7).

Fig. 8 shows an up-sampled virtual stereo frammgus
Lanczos-filtering and a super-resolution virtuareb frame
(each of size 1080x864 pixels) of the “Dome”-seaqaer-our
close-ups illustrate the reduction of the previonsntioned
artifacts on sequence “Dome”. Especially, the sattt
pattern was significantly reduced in the superitggam mode
(Fig. 8c,qg,i). Furthermore, aliasing artifacts b@eo more
visible in the up-sampled frame, which can be smethe top
of the right arc in Fig. 8e.

VI.

Two subjective quality tests were carried out ttess the
performance of RSVS against standard 2D/3D comwersi
approaches like DIBR and time-shift. The test ctods are
standard conform to the ITU recommendations [4f].tHe
first session of the experiment, 15 subjects weked to rate
the quality impression of 25 real test sequencésceSno
ground truth data was available (the test sequencm®
originally captured with a single camera),simgle stimulus
(SS) method was applied [48].

In a second session, again 15 subjects were askatketthe
quality impression of three synthetic test sequeneadered

PSYCHO-VISUAL EXPERIMENTS



Fig. 8. Super-resolution stereo view synthesishef “Dome”-sequence (1080x864 pixels). a) virtuereo view up-sampled and b) supeselution stere
view. c), e), g), i) close-up of the up-sampled dhd), h), j) close-up of the super-resolutioarfre

from a 3D model with a parallel stereo camera Bgce
ground truth data could always be used as refererdeuble
stimulus continuous quality scal@DSCQS) method was
applied [48].

A. Subjective Quality Test (SS method)

In the first session of the experiment, 15 sulsjeetre asked
to rate the quality impression of 25 test sequen]:&spf the Fig. 9 Example pictures of the test sequences. Leftvé8@9” from th
sequences were taken from the BBC documentatioan&®l ggc.documentation “Planet Earth”, series “Caves’ (72Bx4pixels)
Earth” and seven were captured with a handheld @meRiaht: hanheld seauence “Charlottenbura02” (720x576 oi:
(Canon XLs 1, progressive scan, DV coded). Two ¢tam
pictures are illustrated in Fig. 9. Whereas the B&&Quences
have a very smooth and linear camera path, thereametion
of the handheld sequences was very unsteady. All te
sequences have similar (almost static) content.
Each of the sequences was displayed in three efiffer
modes: 2D (the same sequence is presented toftlamderight Fig. 10 Example pictures of the three synthetic sequendeft
eye), 3D converted with RSVS and 3D using a tinié-gre. a TUBroom1’, middle: “TUBroom2", right: “TUBroom3”

time-delay of 4 to 10 frames was applied to thedefight eye  gemonstrates the flexibility of RSVS against simiiniee-shift,
sequence). The presentation period of each teseseq Was \yhich is heavily restricted to horizontal cameraveroents.

about 10 seconds followed by the voting period @&é&conds, Although a 3D presentation of the test sequences wa

Wher_e the_ assessors had to rate the overall qualitthe always preferred by the subjects, the 2D mode guilas
previous displayed test sequence. results as RSVS. One reason is the appearanwessf talkin

_ The evaluation results, in terms of the averagean ihe 3p sequences resulting from imperfect imagearsgion
opinion scoreyMOS) and the standard deviations (S.D.), arf19], i.e. the left-eye view leaks through to thight-eye view

presented in TABLE I. In Fig. 11 a diagram of thee@ge 5nq vice versa. This effect is naturally not visilih the 2D
mean opinion scores with 95% confidence intervaitsafl test |\ 1,nqe Thus. the stereoscopic depth perception bifs &

sequences is displayed. positive contribution to the overall image qualisnd a
The overall ratings indicate that 3D converted VREBVS negative effect caused by cross talk.

has the best quality impression with a MOS of 7.485all

assessors. Due to a smooth horizontal and lineaterza TABLE |

. . .. SSMETHOD: AVERAGE MEAN OPINION SCORES AND STANDARD DEVIATIONS
motion, the ratings for the BBC sequences are garylar. - -
Here, a time-shift yields almost the same resutsR8VS,  paa set 2D 3D /RSVS 3D /time-shift
although a small vertical parallax could be notit@dsome of MOS S.D. MOS S.D. MOS S.D.
the time-shifted sequences. For the handheld seggeRSVS gBec 7707 1.663 7.830 1.703  7.819  1.792
_outperfo_rms tlme-shlft significantly. Here, the tieal parallax | . qheld 6.390 1550 6.600 1858 2971  1.632
in the time-shifted sequences, caused by unsteadyera

overall 7339 1631 7.485 1746  6.461  1.747

motion, was quite annoying to all test subjectsusihthe test



Fig. 11. Average results of the &&thod. Average perceived subjec
quality impression (MOS) with 95% confidence intds/

Fig. 12. Average results of the DSCQethod. Average perceiv
subjective quality impression (DMOS) with 95% calefince intervals

B. Subjective Quality Test (DSCQS method)

In the second session of the experiment, 15 subjeetre
asked to rate the quality impression of three sftithtest
sequences (see Fig. 10) rendered from the samecgielwith

TABLE Il
DSCQSMETHOD: AVERAGE DIFFERENCE MEAN OPINION SCORES AND
STANDARD DEVIATIONS[DMOS (S.D.)]

Data set Time-shift DIBR DIBR LR RSVS RSVS LR
0.35 135 327 116 064
TUBrooml 172y (172)  @10) (L71)  (1.42)
0.65 212 230 010  1.06
TUBroom2 151y (1.78)  (1.59) (1.49)  (1.43)
0.02 173 226  -055  0.06
TUBroom3 — g94  (150) (2.38) (1.16)  (0.72)
wverall 0.34 173 261 024 058
(132)  (L70) (1.83) (163)  (L30)

According to the DSCQS test conditions, the subjestre
presented with a series of pairs of stereoscopipis®es.
Each converted sequence (test) was related twimessively
to its error free version (reference). The timet $to each
stereoscopic sequence was 9 seconds and the titweene
two sequences was 2 seconds. The persons recdndied t
assessment of the quality of both sequences (referand
test) on two continuous graphical scales for eashgeriod. A
measurement of length makes the subjective scaaitable,
which is within a range of 0 to 10.

The evaluation results, i.e. the averadjference mean
opinion scores(DMOS) and the standard deviations (S.D.),
are presented inABLE Il. In Fig. 12 a diagram of the average
mean opinion scores with 95% confidence intervaisafl test
sequences is displayed.

The subjective quality test shows that our proposed

approaches yield excellent results. Starting wita bverall
ratings, the sequences converted with standard R&¢She
best quality impression with a DMOS of 0.24. Evimnetshift
achieved good results for all test sequences, witho as
mentioned in the previous subsection, vertical lf@taand
shear distortion[49] could be noticed. For the “TUBroom 1"-
sequence time-shift even outperforms all other ecsion

different perspectives and camera motions, whiclvehamethods. The good performance of time-shift redubis: two

different critical influences on the conversiona@ithms and
even on the reference sequences. Each of the seEuems
displayed in five different 3D modes converted witime-
shift, standard DIBR [15] (one view remains oridjn®IBR

LR (left and right view are generated from the orgiview),

standard RSVS (one view remains original) and R3S

(left and right view are generated from surroundanginal

views).

In the first sequence the camera moved partlyfornaard
direction, which is critical for the synthesis wWiRSVS. The
second sequence has a slightly vertical motionthab some
vertical parallax is expected for time-shift. Figalthe third
sequence has a large foreground object passingnthge
boundaries, which is even critical for the refeergarallel
stereo rig. Here, a break of depth cues is expesimce a
parallel camera rig produces only negative paraieith the
objects coming out of the screen. When passingirttage
boundaries, these objects should be located behadcreen
(positive parallax) with respect to the monoculeptth cues.

! The parallax value from left to right view is idiral to the standard
approach

significant factors. First, all test sequences halmost a
horizontal and linear camera movement, which iessary for
a simple delay in time. Second, time-shift is thalyo
conversion method that uses two original frames the
sequence to generate a stereoscopic depth perceptime of
the subjects noticed a blurring effect on the saqes, which
is always present in the virtual views of the otbenversion
methods (resulting from the bilinear interpolatiohis can
also be seen in the ratings of the DIBR LR and RIS
approaches where both stereoscopic views are Nyrtua
synthesized. Only for the “TUBroom 1"-sequence RSMS
outperforms standard RSVS. Here, the camera maotias
quite critical for RSVS (see section VII for detibn the
limitations). Namely, the camera moved temporaiity a
forward direction. Thus, the baseline increasesvéeh a
virtual view and a neighboring original view regudf in larger
transformation errors.

Finally, RSVS has a negative DMOS for the “TUBro8tn
sequence, i.e. most of the test subjects ratete#tesequence
better than the reference. Here, the referenceeseguhad a
break in the depth cues: The cube in the foregrqaed Fig.



10) went out of the image boundary, meaning, thHeeanust
be located behind the image screen (monocular deyf.
Since a parallel camera setup was used for theaerefe
sequence resulting in a negative parallax, the @ilmcated in
front of the screen (stereoscopic depth cue). Dineak of
depth cue is also present in the test sequencéshaffect was
reduced by a smaller negative parallax and an iaddit
positive parallax.

Although the depth range between fore- and backgtas
quite high, the planar transformation errors of BSafe still
small and not visible within the sequence.

VII.

The RSVS approach presented has some limitatiohe.
most important one is that the scene has to béc,siad.
moving objects within the scene would disturb theptt
perception. Furthermore, there are restrictions camera
motion. If the camera moves only in a forward- eckward
direction, this approach for virtual view synthefads. The
case of a camera movement in up- and down directionbe
handled by transposing the frames by 90 degree$ina
limitation is that a larger screen parallax incemasthe
divergence between the camera path and the posifidhe
virtual views as depicted in Fig. 1 on the bottaft.IHence, a
planar transformation might not be valid any londgfethe
scene consists of fore- and background objects diffarent
depths, i.e. the larger the depth range of theestgrthe more
transformation errors can occur if the baselingtlerbetween
virtual an original views increases.

LIMITATIONS

VIIl. SUMMARY AND CONCLUSIONS

This paper presented a new approach for generation

super-resolution stereo and multi-view video froranwmcular
video, i.e. we extended our previous work on RS &
super-resolution mode. To our knowledge it wasfifst time
that generation of super-resolution multi-view \dadérom

monocular video was addressed. Thus, the algorithm 2]

suitable for offline content creation for convemid and
advanced 3D display systems with minimum user &@s&s.

The main advantage of this approach over availBbhBR
algorithms is that planar transformations are adii to
generate the virtual views from original views, .i.@
computational expensive and error
estimation is not needed. Furthermore, the ocatupioblem,
which is always present in dense depth estimatioas almost
not exist. Another advantage is that photo realsm@chieved
without additional operations, since the photoregprioperties
of a scene are determined entirely by the oridir@ahes of the
reference sequence.

The algorithm was tested on several data sets. THE

simulation results show the remarkable performaotehe
conversion process. Especially the super-resolutioode
reduced significantly de-interlacing-, aliasinghogting- and
blurring artifacts.

Furthermore, we evaluated standard RSVS with two

subjective quality tests. In the first test RSVSsveampared

with a 2D presentation mode and a 3D presentatiodem

prone dense depth

utilizing time-shift. Although a slightly verticgbarallax was
noticed in the time-shift mode, which naturally ses eye-
strain, the results compared with RSVS were vemilar.

Since the duration of typical video is much longerfurther
study of this stereoscopic impairment has to baexhout.

In a second subjective test, five different cosimr
methods were applied to three synthetic test sewsen
Although ground truth depth maps for DIBR were e,
RSVS significantly outperforms DIBR. Usually, exst video
material to be converted into stereoscopic 3D hagiepth
maps available. Hence, dense depth estimationaftin #ame
has to be applied, which is, as stated in Sectistill an error
prone task and computationally very expensive. Kbetess,

7if depth maps are available, DIBR has no restnstio

concerning video content or camera motion. Furtibeemthe
synthesis of virtual views is less complex thamgskRSVS
which heavily depends on the camera motion. Only fo
horizontal panning with almost no camera rotationbgere
RSVS just needs one original view to generate thsired
virtual view, DIBR and RSVS have the same compjexit

Despite the restrictions mentioned in the previsestion,
the presented algorithm is highly attractive asa for user-
assisted 2D-3D conversion and 3D production systétigh
quality conversion and post-production is still donsing
semi-automatic software systems. Here the presented
automatic algorithm heavily reduces the manual Veartk for
many sequences.
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