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ABSTRACT

Pixel-based and motion vector-based global motion estimation (GME)
techniques are evaluated in this paper with an automatic system for
camera motion characterization. First, the GME techniques are com-
pared with a frame-by-frame PNSR measurement using five video
sequences. The best motion vector-based GME method is then eval-
uated together with a common and a simplified pixel-based GME
technique for camera motion characterization. For this, selected
unedited videos from the TRECVid 2005 BBC rushes corpus are
used. We evaluate how the estimation accuracy of global motion
parameters affects the results for camera motion characterization in
terms of retrieval measures. The results for this characterization
show that the simplified pixel-based GME technique obtains results
that are comparable with the common pixel-based GME method, and
outperforms significantly the results of an earlier proposed motion
vector-based GME approach.

Index Terms— Motion Analysis, Global Motion Estimation,
Motion Vector Field, Camera Motion Characterization, Video Pars-
ing

1. INTRODUCTION

The content-based video analysis of camera motion should ideally
lead to a perfect description of camera operations performed dur-
ing recording. A characterization of camera motion comprises the
boundaries of coherent temporal segments with the same camera
motion and the description of camera motion types, e.g. panning
left and zooming in. Such results can be used for further video anal-
ysis techniques like video parsing, video indexing, or video summa-
rization. These techniques are then enabled to take advantage of the
semantic meaning of camera operations. They can better utilize the
temporal domain of video sequences. An automatic characterization
of camera motion based on higher-order motion model parameters
uses a global motion estimation (GME) algorithm to obtain these
parameters in the first step. The estimated global motion should be
consistent with the actual camera operation. For this, GME algo-
rithms have to be specifically robust against moving objects with a
divergent motion compared to the background and should also be
applicable for fast motions.

Several GME algorithms were proposed in past works, where
pixel-based GME algorithms such as [1] use the luminance signals of

This research was partially supported by the European Commission un-
der contract IST-1-038398 (VISNET II). BBC 2005 Rushes video is copy-
righted. The BBC 2005 Rushes video used in this work is provided for re-
search purposes by the BBC through the TREC Information Retrieval Re-
search Collection.

an image pair and motion vector-based GME (MV-GME) methods
like [2–4] start with motion vectors obtained by a block-matching
method. Motion vectors are included in video streams of motion-
compensated video codecs. The vectors are essentially used with
the motivation to lower the computational complexity and avoid a
repetition of motion estimation with block-matching or pixel-based
GME due to their significant higher computational costs.

Earlier evaluations of GME algorithms and motion vector-based
GME methods [5, 6] compare the methods also with mean-square
error of global motion compensation. They do not use the estimated
parameters for camera motion characterization. In [7], a motion
vector-based GME method was examined for classification of wide-
angle and close-up shots.

We evaluate two pixel-based and five motion vector-based GME
algorithms by means of PNSR values for global motion compen-
sation on five sequences with and without moving foreground ob-
jects. Subsequently, we evaluate the motion vector-based GME with
the highest PSNR value and the two pixel-based GME methods for
affine parameters with a system for camera motion characterization.

This paper is organized as follows. Section 2 introduces shortly
the five considered GME methods using motion vectors as input
data, followed by a description of the two pixel-based GME tech-
niques in Section 3. Section 4 gives an overview of the system for
camera motion characterization. The experimental results are pre-
sented in Section 5. The paper concludes with Section 6.

2. GME USING MOTION VECTORS

2.1. MV-GME using gradient descent approach

Global motion parameters can be computed from motion vectors
with a gradient descent (GD) approach [4]. For affine parameters,
the error criterion E can be formulated as

E =
X
∀i

wi

“
(vxi + xi −m1xi −m2yi −m3)

2 +

(vyi + yi −m4xi −m5yi −m6)
2
”
,

where xi and yi are the coordinate values for horizontal and vertical
direction, vxi and vyi are the horizontal and vertical values for the
i-th motion vector, and m1..6 are the six affine parameters. For GD,
wi is always 1. The robust variant of GD uses in this work an M-
Estimator (GD-ME) and weights the motion vectors with wi.

2.2. MV-GME with least square solution

Motion vectors can also be used in an overdetermined systems of
equations, where the least square solution (LSS) for global motion
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Fig. 1. Pixel-based Gauss-Newton gradient descent GME algorithm
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Fig. 2. Simplified pixel-based Gauss-Newton GME algorithm

parameters is obtained by using the pseudo inverse [2, 3]. Similar to
GD-ME, a weighting factor wi can be introduced to the computation
of the LSS and leads to a robust solution using an M-Estimator (LSS-
ME) [3].

2.3. MV-GME using RANSAC

The random sampled consensus (RANSAC) method [8] can be uti-
lized for motion-vector based GME. This method defines iteratively
a set of motion vectors which is used to obtain the global motion
parameters outlined above.

3. PIXEL-BASED GME METHODS

3.1. Gauss-Newton gradient descent GME

The pixel-based Gauss-Newton gradient descent algorithm as shown
in Fig. 1 is an energy minimization method and is used because
of its very good performance if the start point is close to the mini-
mum desired [1]. Phase correlation is applied to ensure the initial-
ization of the translational motion parameters as well as to decrease
the computational complexity. An image pyramid is used to reduce
essentially the computational costs. The phase correlation and gradi-
ent descent algorithm start on lower resolution versions of the input
images. Afterwards, the obtained motion parameters initialize the
Gauss-Newton algorithm at the upper stages until the original image
size is reached. For downsampling, the low pass component of a
wavelet decomposition is extracted. The motion parameters for the
considered image pair are then computed.

3.2. Simplified GME on downsampled image-pairs

A simplified version of the previous described GME approach as
shown in Fig. 2 is also considered in this work. It lowers the com-
putational costs even more and accelerates the estimation process.
Only downsampled image versions are used. The phase correlation
initializes the translational parameters and subsequently, an affine or
perspective Gauss-Newton algorithm obtains the global motion pa-
rameters.

4. CAMERA MOTION CHARACTERIZATION

The approach for camera motion characterization used for the evalu-
ation of different GME algorithms relies on affine motion parameters
[9]. Figure 4 shows a block diagram of the whole approach. First,
the system decodes the video for GME algorithms that are based
on image data. Motion vectors, if available, are extracted for mo-
tion vector-based GME techniques. After GME, affine parameters
are factorized using the Singular Value Decomposition (SVD) into
scaling, rotation, and skewing components. For each camera mo-
tion type, suitable features for classification are extracted from these
components and the translational parameters. Further details on fea-
ture extraction from affine parameters are given in [9]. The approach
uses three multi-class SVMs (M-SVMs) to detect the camera mo-
tion types pan, tilt, and zoom independently for an image pair. Each
M-SVM distinguishes between the occurrence and the direction of
each motion type. Thus, each of the three M-SVMs provides a result
with three possible states, e.g. pan left/right and no pan. The camera
motion types pan left/right, tilt up/down, zoom in/out, and no cam-
era motion can occur alone or in combinations between pan, tilt, and
zoom. Changes between such combinations are identified as bound-
aries of segments with the same type or types of camera motion.
This leads to a motion-based temporal segmentation for an analyzed
video sequence on sub-shot level. Furthermore, shot boundaries de-
tected separately can be included in the overall segmentation result.

5. EXPERIMENTAL RESULTS

The experimental evaluation is performed in two steps. First, all
GME algorithms as described in Sections 2 and 3 were evaluated
with a frame-by-frame PSNR measurement. In the second step, the
best motion vector-based GME algorithm was evaluated against the
two pixel-based GME methods using a system for camera motion
characterization.

5.1. Frame-by-frame PSNR measurement
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Fig. 3. Background Y-PSNR curves for sequence ”Stefan” compar-
ing pixel-based affine GME (352× 240), simplified GME on down-
sampled images (by 4), MV-based affine GME (GD-ME - robust
gradient descent approach)

The frame-by-frame PSNR measurements for all considered GME
methods were performed with five video sequences: ”Biathlon” (200
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Table 1. Mean background Y-PSNR values in dB, five video sequences, affine and perspective motion models (P-GME - pixel-based GME,
SP-GME - simplified pixel-based GME, GD/GD-ME - Gradient Descent without and with M-Estimator, PInv/PInv-ME - Pseudo Inverse
without/with M-Estimator, and RANSAC - Random sample consensus)

Sequence Biathlon Race Stefan TUB Room Castle Average
with moving foreground objects only background mean PSNR

Motion Model affine persp. affine persp. affine persp. affine persp. affine persp. affine persp.
P-GME 28.23 28.44 36.85 37.22 28.51 29.25 30.75 32.37 34.80 34.88 31.83 32.43

SP-GME 27.35 27.41 32.64 32.44 25.59 26.67 29.77 31.11 33.78 33.85 29.82 30.29
GD 24.99 24.99 24.58 24.26 19.72 19.67 27.54 26.68 28.83 28.86 25.13 24.89

GD-ME 24.48 24.59 32.05 29.62 21.65 20.67 27.50 27.37 29.92 29.90 27.12 26.43
LSS 25.03 24.99 24.58 24.36 19.72 19.61 27.54 26.69 28.83 28.86 25.14 24.90

LSS-ME 24.83 24.46 27.94 32.35 20.26 22.58 27.80 27.57 29.87 30.06 26.14 27.41
RANSAC 24.72 24.79 30.33 30.93 21.19 21.35 27.36 27.32 29.99 30.00 26.72 26.88

frames, 352 × 288, 25Hz), ”TUB room” (160 frames, 352 × 288,
25Hz), ”Castle” (685 frames, 352×288, 25Hz), ”Race” (100 frames,
352 × 240, 30Hz), and ”Stefan” (300 frames, 352 × 240, 30 Hz).
While ”TUB room” and ”Castle” contain no moving objects, all
other sequences do. To determine the most correct motion vec-
tors, an exhaustive block-matching algorithm (full search) was used
instead of using directly the motion vector fields from the MPEG
video streams. This is motivated by eliminating the influence of
encoder-specific suboptimal block-based motion estimation for the
evaluation. All five motion vector-based GME variants (GD, GD-
ME, LSS, LSS-ME, RANSAC) were applied on obtained motion
vectors to compute parameters for affine and perspective motion
model. Affine and perspective motion parameters are also estimated
using the two pixel-based GME methods. The global motion pa-
rameters are then used to compensate the global motion between
successive frames. PSNR values are computed with the remain-
ing error of global motion compensation using a manually created
background mask for each sequence with moving foreground ob-
jects to measure the estimation of the background precisely. Ex-
emplarily, we show the PSNR curves for the ”Stefan” sequence in
Fig. 3. The means of PSNR curves are given in Table 1 as well as
the average of means over all sequences. The results show an ex-
pected outcome that highest PSNR values were obtained for the two
pixel-based GME methods. Even though the perspective pixel-based
GME lead to the best PSNR values, the affine values are comparable
and even the simplified pixel-based GME with less computational
complexity obtains high PSNR values. The PSNR values from mo-
tion vector-based GME methods show a more prominent variation
depending on the method, motion model, and sequence. For the se-

quences with no foreground motion, the motion vector-based GME
results have at least a distance of about 2 dB to the simplified pixel-
based GME method. The lowest PSNR difference to the simplified
pixel-based GME method with 0.09 dB was obtained for the ”Race”
sequence with the LSS-ME algorithm. However, the PSNR differ-
ence between the same two algorithms using the perspective model
for the ”Stefan” sequence is 4.09 dB. So it is obvious that there is no
vector-based method with steady best results compared to all other
motion vector-based methods. However, we selected the best mo-
tion vector-based GME algorithm to be used in the next evaluation
step with affine motion model on the basis of the average over mean
Y-PSNR values for all sequences. Here, the robust gradient descent
approach with M-estimator (GD-ME) prevailed among all examined
motion vector-based methods.

5.2. Evalutation for camera motion characterization

After selecting GD-ME as best motion vector-based GME algorithm
for affine motion model, this algorithm is further evaluated using
a system for characterization of camera motion. GD-ME is evalu-
ated against the pixel-based GME algorithm and its simplified ver-
sion. For this, we used selected videos from the development and
test set of the TRECVid 2005 BBC rushes video corpus [10]. These
videos are unedited and challenging for GME. We selected 19 train-
ing videos (37145 frames, 63 shot boundaries) from the development
set and 13 test videos (16547 frames, 24 shot boundaries) from the
test set. Thus, we have approximately 70 % training data and 30 %
available for evaluation purposes. All videos together have a total
duration of about 35 minutes. The ground truth was created man-
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ually. Shaky camera movements were labeled as undefined camera
motion and ignored during training and testing. Exploring the occur-
rence frequency of motion types reveals that camera panning occurs
more often and with higher motion intensity than camera tilting or
camera zooming within our selected videos. Camera rotation is not
considered here due to the small number of rotations included in
the data set. A more detailed statistic of occurred camera motion
types is given in [9]. For classification, a one-against-one scheme
for multi-class SVMs was used with linear kernels . The soft-margin
parameter C was determined by 5-fold cross-validation grid-search
in the range of [0.5, 1, 5, 10, 20, 50, 100, 200]. The measures preci-
sion P , recall R, and F1-measure were used to evaluate the results
on frame-by-frame level and segment level. The frame-wise results
are listed in Table 2. The camera motion characterization was per-
formed with pixel-based GME (R1), simplified pixel-based GME
(R2), and motion-vector based GD-ME (R3) for training and testing
exclusively. Furthermore, we used the pixel-based GME for train-
ing and evaluated for testing the simplified pixel-based GME (R4)
and the motion vector-based GD-ME (R5). Even if the GD-ME ap-
proach can obtain promising results for panning, a motion type with
high intensity, the results for tilting and zoom are not satisfying. The
approach failed at all for zooming in/out and tilting down in finding
the desired camera motion. Table 3 contains the retrieval measures
for segment-wise evaluation as performed in [9] for all five results
(R1-R5). The table shows that the pixel-based GME method and its
simplified version outperform significantly the motion vector-based
GD-ME GME method. With M-SVM models trained on features ex-
tracted from parameters estimated by the pixel-based GME method,
the simplified pixel-based GME method as well as the GD-ME GME
method could be further improved for the testing phase.

Table 2. Frame-wise evaluation of GME algorithms using camera
motion characterization (P , R, F1 in percent, further explanation on
results R1..R5 is given in Section 5.2)

Pan left Pan right
P R F1 P R F1

R1 96.22 84.36 89.90 96.92 83.69 89.82
R2 98.70 73.80 84.45 96.53 77.98 86.27
R3 90.37 83.05 86.56 70.05 80.38 74.86
R4 98.02 73.40 83.94 97.37 75.79 85.23
R5 72.78 79.68 76.08 75.58 55.53 64.02

Tilt up Tilt down
P R F1 P R F1

R1 90.45 35.93 51.43 87.72 80.82 84.13
R2 74.31 32.34 45.06 96.19 71.69 82.15
R3 93.88 36.73 52.80 – 0.00 –
R4 87.02 36.13 51.06 96.67 68.15 79.94
R5 95.29 36.33 52.60 84.27 72.76 78.09

Zoom in Zoom out
P R F1 P R F1

R1 89.02 66.36 76.04 72.20 81.30 76.48
R2 99.32 66.82 79.89 75.56 29.57 42.50
R3 – 0.00 – – 0.00 –
R4 99.32 65.91 79.23 73.84 76.09 74.95
R5 – 0.00 – – 0.00 –

No motion
P R F1

R1 94.54 97.48 95.99
R2 91.48 98.90 95.04
R3 90.52 99.44 94.77
R4 90.88 99.57 95.03
R5 88.83 97.12 92.79

Table 3. Segment-wise evaluation of GME algorithms using camera
motion characterization (P , R, F1 in percent)

P R F1

R1 75.12 83.71 79.19
R2 74.87 77.71 76.27
R3 70.08 53.71 60.81
R4 78.23 79.14 78.68
R5 71.43 65.71 68.45

6. CONCLUSIONS

We have evaluated pixel- and motion vector-based GME methods
with PSNR measurements and using a system for camera motion
characterization. Experimental results show that the examined mo-
tion vector-based GME methods do not obtain highly precise global
motion parameters and thus, parametrical camera motion characteri-
zation can also not obtain suitable results using such parameters. The
simplified pixel-based GME outperforms the best motion vector-
based GME method. Furthermore, this method is less computational
complex than pixel-based GME using an image pyramid. This is a
very good compromise between computational complexity and mo-
tion estimation accuracy as well as highly satisfying camera motion
characterization results.
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