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ABSTRACT

A lead sheet is a type of music notation which summa-
rizes the content of a song. The usual elements that are
reproduced are the melody, chords, tempo, time signature,
style and the lyrics, if any. In this paper we propose a sys-
tem that aims at transcribing both the melody and the as-
sociated chords in a beat-synchronous framework. A beat
tracker identifies the pulse positions and thus defines a beat
grid on which the chord sequence and the melody notes are
mapped. The harmonic changes are used to estimate the
time signature and the down beats as well as the key of the
piece. The different modules perform very well on each of
the different tasks, and the lead sheets that were rendered
show the potential of the approaches adopted in this paper.

1. INTRODUCTION

The lead sheet format is a convenient form of music nota-
tion for songs. It is mostly used for popular music and fa-
mously represented by collections of Jazz standards, e.g.,
The Real Book. It allows the musician to see all the impor-
tant elements necessary to perform a song in a very com-
pact format. It mostly consists of a single staff; the melody
is notated in Western music standard, with the associated
lyrics under the staff and the chord sequence noted above
it. The lead sheet also often specifies the style, i.e., the
way the melody has to be played, e.g., straight or swung
rhythm, and the way the accompaniment should be gener-
ated from the chords. Of course, it also defines the time
signature, the key and the tempo.

Very few works have been oriented towards producing
usable music scores directly from audio. In [1], the au-
thors estimate the melody, the bass line, and the chords.
However, the results are not temporally quantized, so the
output is not completely suited for lead sheet generation
itself. This temporal quantization is indeed a non-trivial
problem and we propose a potential solution in this paper.

The proposed lead sheet transcription system can be
broken down into four seperate modules which exchange
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Figure 1. Modules of the proposed system along with the
intermediate results they exchange. Dashed lines mark po-
tential future dependencies.

intermediate results. These modules are depicted in Fig. 1.
The beat tracker provides a continuous pulse grid which
forms the temporal basis for the other modules. The algo-
rithm favours faster tempi such that the risk of phase errors
is minimized and ensures a continuos beat grid. The reader
is refered to [2] for details about the chosen approach. In
this article, we directly use the output of this algorithm.
The ith beat position in seconds is denoted bi. The har-
monic module estimates beat-aligned chord sequences, the
most likely measure grid, and the key of the piece. The
measure grid is in turn used to refine the chord sequence by
making chord change probabilities depend on the position
in the measure. The chord detection module is based on the
approach described in [3]. The melody module first sepa-
rates the main melody and the accompaniment building on
the approach presented in [4]. The model is extended such
that the fundamental frequencies of the main melody and
the musical (MIDI) notes of the melody are jointly esti-
mated. The rendering module determines the appropriate
time signature, quantizes the note onsets and durations of
the melody to sub-divisions of the beat level, divides both
melody and chords in measure blocks, and applies pitch
spelling depending on the estimated key.

In the following section we describe the chord detection
scheme and how the down-beat positions are estimated us-
ing the detected chord sequence. After that the key es-
timation method is introduced. The melody extraction is
discussed in Sec. 4. In Sec. 5, we describe how the lead
sheets are rendered. Finally, we present the results as well
as our conclusions and perspectives.
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2. ESTIMATION OF CHORDS AND MEASURES

2.1 Chord detection

The chord detection module can be considered one of the
numerous followers of the approaches described in [5] and
[3], which are based on Hidden Markov Models (HMM).
We model the chords as states of the HMM using a chord
alphabet comprising major and minor chords, i.e., the er-
godic model has S = 24 states ωk, k ∈ [1, S]. The chord
sequence is given as the most likely sequence of states
given the observed feature sequence; this is known as the
decoding problem which is solved using the Viterbi algo-
rithm. Training and decoding is done in a 10-fold cross-
validation setup.

2.1.1 Feature extraction

Beat-synchronous chroma vectors computed from the au-
dio data form the observable features. The audio signal
is mixed to a single channel and downsampled to 11025
Hz. We compute a constant-Q spectrogram [6] from note
E2 (82.4 Hz) to note D#6 (1.24 kHz) using a hop size of
512 samples 1 . Due to the chosen lowest frequency the
length of the longest window is 4096 samples. Chroma
vectors are computed by summing up the magnitude of the
transform for each of the 12 pitch classes over all four oc-
taves. We then use the result from the beat tracking module
to average all feature vectors within beat boundaries. Let
xc(i) denote the 12-dimensional chroma vector represent-
ing the time segment between beat positions bi and bi+1,
i = 1, 2, ....

2.1.2 Training

The observation distribution is modeled as a multivariate
Gaussian per state with mean vectors µk and (full) co-
variance matrices Σk, k ∈ [1, S]. The prior probabilities
are considered uniformly distributed. Both the transition
probabilities and the observation distribution are computed
from the training sets using beat-quantized annotation data
in a similar fashion as described for methods 1 and D in [7].

2.1.3 Initial chord sequence decoding

In the first stage, the chord sequence is decoded using the
classic Viterbi algorithm. Let q1(i) denote the initial es-
timate of the decoded chord symbol which is assumed to
have emitted xc(i). Based on this initially decoded se-
quence we estimate the measure grid.

2.2 Estimating the measure grid

We assume that the probability of chord changes depends
on the position in a measure and that, generally, chords are
more likely to change at the beginning of measures [8].
We also assume a constant time signature; we do not, how-
ever, assume a 4/4 meter (although it clearly dominates our
database). We consider a set of measure grid candidates of
width ν ∈ [3, 4, ..., 8], i.e., each third, fourth, ..., eighth

1 Note that, for the database we used, we can consider all pieces per-
fectly tuned to A4 = 440 Hz
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Figure 2. Probability of chord changes depending on the
position in the measure for 4, 6, and 8 beats in a measure,
respectively.

beat is assumed a down-beat. For each ν we have to con-
sider ν potential phase candidates φ ∈ [1, ν], i.e., the first
down-beat is b1, b2, ..., or bν . For each of these grid width
and phase candidate pairs, we compute the score

s(ν, φ) = Tcc(ν, φ)− Fcc(ν, φ), (1)

where Tcc(ν, φ) denotes the number of grid points which
fall on beat positions with a chord change, i.e., q1(i−1) 6=
q1(i), andFcc(ν, φ) denotes the number of grid points with-
out chord changes. The pair (νo, φo) = arg max s(ν, φ)
determines the chosen measure grid. Note that ν does not
necessarily correspond to the numerator of the time signa-
ture as the beat we tracked may actually reflect half-time
or double-time tempo.

2.3 Refined chord sequence decoding

We use the measure grid estimate to compute the refined
chord sequence q2(i) by making the transition probabili-
ties depend on the position in the measure. Based on the
down-beat information given by the annotation we com-
pute the distribution of chord change positions relative to
the measures from the training set. For the database we
used, which will be discussed in Sec. 6, there are three
possible values of ν: 4 (4/4 meter), 6 (6/8 meter), and 8
(4/4 meter; beat represents 8th notes). Fig. 2 depicts an
example for the resulting probability profiles. As antici-
pated, chords are most likely to change on the beginning
of a measure. We now propose a modified Viterbi decod-
ing procedure. As we assume a continuous beat and mea-
sure grid, we can compute the current beat position in a
measure bm = (i−φo) (mod νo) + 1. Now the transition
probability matrix is modified in the following manner: the
diagonal, i.e., the probability to remain in the current state,
is set to 1− pcc(bm), where pcc(bm) denotes the probabil-
ity of a chord change at beat position bm in the measure.
The remaining non-diagonal elements are scaled such that
they add up to pcc(bm). Decoding the HMM using these
varying transition probabilities gives the refined chord se-
quence q2(i).
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3. KEY ESTIMATION

To estimate the key one can compute an average chroma
profile and correlate it to key-specific templates [9]. In-
stead, we propose to compute the mean vector of the chord
likelihoods using the trained Gaussian distributions for the
chord states. We compare both approaches. We train key
template profiles for major and minor keys which are cir-
cularly shifted to form all 24 possible key profiles. To this
end, xc(i) is circularly shifted such that the key is mapped
to the root C for all pieces in the training set. The chroma-
based templates µK1(m) for both key modes m, major
and minor, are computed as the mean vector of all shifted
chroma vectors representing mode m. These templates
have dimension 12. For the chord-based templates, the
multi-variate Gaussian distribution is evaluated to compute
the likelihoods P (xc|ωk). The 24-dimensional mean vec-
tor of these chord likelihoods for both modes m, normal-
ized to add up to one, gives the second set of key templates
µK2(m). To estimate the key of a piece we compute both
the mean chroma vector and the normalized mean chord
likelihoods. Then we compute the dot product of these
test profiles and all 12 shifted variants of the two key tem-
plates as a measure of correlation. Note that for µK2(m)
the two halves of the likelihood vectors representing ma-
jor and minor chords must be shifted independently. The
key for which the template maximizes the dot product is
chosen. This is done for both µK1(m) and µK2(m) to
compare the results.

4. MAIN MELODY ESTIMATION

4.1 Global model for main melody sequence

Our model for melody estimation is based on the model
proposed in [4]. In order to achieve a meaningful quan-
tization of the desired melody line, we adapted the note
duration model initially proposed in [10].
The observation audio signal x is considered as the instan-
taneous mixture of two contributions, the main instrument
voice v playing the main melody and the accompaniment
or background music m, i.e., x = v + m. This relation
stays valid for the short time Fourier transform matrices
X , V and M of these signals. We assume that the sig-
nal was decomposed into N frames, with Fourier trans-
forms of F positive frequency bins. We model the complex
Fourier transforms as complex proper centered Gaussians,
for which we more specifically model the variances.

On one hand, for the accompaniment M , the “Nonneg-
ative Matrix Factorization” (NMF) model is retained. The
resulting variance SMn

(f) for Mn(f), at frame n and fre-
quency f is then given by:

SMn
(f) =

R∑
r=1

WM (f, r)HM (r, n), (2)

where R is the number of elements in the spectrum dictio-
naryWM andHM is the activation coefficient matrix asso-
ciated to WM . In matrix notation, with the variance matrix
SM such that SM (f, n) = SMn(f): SM = WMHM .

level
Filter

K(n− 1) K(n) K(n + 1)

Main
Instrument
level

Vn−1(f) Vn(f) Vn+1(f)

Fundamental
Frequency
level

F0(n− 1) F0(n) F0(n + 1)

Note levelE(n)E(n− 1) E(n + 1)

Figure 3. Generative model for the main instrument
source/filter model.

On the other hand, the main instrument voice V is mod-
elled through a source/filter model. The source part is
driven by a three-layer generative model, shown on the up-
per part of Fig. 3. The filter part is modelled thanks to a
two-layer model (lower part of Fig. 3). Note that the main
instrument level V is also a hidden layer which, along with
the accompaniment levelM , gives the mixture observation
level X .

The source level comprises two hidden levels. First,
the fundamental frequency level F0(n) controls the pitch
of the main instrument. These variables are dependent on
the second layer, the note level. The evolution between
the states of the note level E(n) and the fundamental fre-
quency states are explained in Sec. 4.2.

The filter layer is simpler, because here, we are more in-
terested in the note and frequency levels. Therefore, we al-
low more flexibility in the evolution of the filter part and do
not model any constraint on the corresponding sequence.

The main instrument level is then generated with the fil-
ter and fundamental frequency levels. The variance matrix
SV for Vn(f), such that SV (f, n) = SVn

(f), is given by:

SV = (

WΦ︷ ︸︸ ︷
WΓHΓHΦ)︸ ︷︷ ︸

Filter part

. ∗ (WF0HF0)︸ ︷︷ ︸
Source part

, (3)

where WΓ is a F × P dictionary of P smooth atomic el-
ements, WF0 a dictionary of NF0 spectral combs for the
voiced source part and HΓ the coefficient matrix such that
the actual filter dictionary WΦ = WΓHΓ. The activation
coefficient matrices for the filter and the source parts re-
spectively are HΦ and HF0 .

The optimal note sequence E = {E(1), . . . , E(N)} is
estimated within a Maximum Likelihood (ML) framework:

Ê, F̂0, K̂ = argmaxE,F0,K
log p(X,E, F0,K). (4)

Such an estimation is computationally too intensive, and
we propose in the next section some simplifications to es-
timate the different levels of the problem.
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4.2 Model Approximations

In order to estimate the desired note sequence, we first ne-
glect the constraint of having only one filter per frame. We
then limit the problem to:

Ê, F̂0 = argmaxE,F0
log p(X,E, F0), (5)

The right-hand side of Eq. (5) can be further expressed as:

log p(X,E, F0) = log p(X|F0) + log p(F0|E) + log p(E),

where, as shown on Fig. 3, we use that the sequence X is
independent from E conditional on F0. Furthermore, we
assume that:

log p(X|F0) ≈
∑
n

log H̃F0(F0(n), n). (6)

In (6), the observation likelihood conditional on the melody
fundamental frequency is approximated with a modified
version H̃F0 of the source activation coefficient matrixHF0

calculated on the data as described in [4]. During this first
estimation round, the observation frames are assumed in-
dependent. We set H̃F0 = HF0 and then normalize each
column of H̃F0 by its maximum value.

The log-likelihood of the fundamental frequency sequence,
conditional on the note state sequence, log p(F0|E) is equal
to:

N∑
n=2

log p(F0(n)|F0(n− 1), E(n)) + log p(F0(1)|E(1))

Strictly speaking, F0(n) should also depend on E(n− 1),
but for simplicity, we drop this dependency. We further
assume that p(F0(n)|F0(n − 1), E(n)) is proportional to
the product:

p(F0(n)|F0(n− 1))× p(F0(n)|E(n)).

p(F0(n)|F0(n − 1)) is a prior that simulates smooth f0

variations. p(F0(n)|E(n)) penalizes the distance between
the fundamental frequency and the “expected” frequency
for the note state E(n). These functions are set to:

p(F0(n) = f2|F0(n− 1) = f1) ∝ exp(−α| log2(
f2

f1
)|),

p(F0(n) = f0|E(n) = e) ∝ exp(−β| log2(f0/fe)|2),

where fe is the “standard” frequency for note E = e.
At last, we use the “segmental” duration model in [10] for
the note state evolution:

log p(E1:n) = log p(En|E1:n−1) log p(E1:n−1). (7)

The interested reader may find more information on this
model in [10] , especially on the exact equations for the
durations as well as on the beam searching algorithm that
allows to find an optimal path for the sequence E.

To put it in a nutshell, we proceed as follows:

1. First assuming the independence of neighbouring
frames, the parameters for the fundamental frequency
and the filters are globally estimated.

2. We then extract pitch candidates for the main melody
from the matrix HF0 and use them to restrain the
range of pitches to be tested when looking for the
optimal path.

3. Finally, we find the optimal path of sequencesE and
F0 using a beam search strategy, maximizing the ap-
proximated likelihood Eq. (5).

4.3 Generating a usable melody track transcription

The note sequence must be further quantized to produce
a musical score. The fundamental frequencies are quan-
tized onto the Western musical scale using the model for
the sequence E. The temporal quantization is yielded to
the rendering module such that the time signature can be
considered.

5. LEAD SHEET GENERATION

Eventually, all the pieces of information are put together to
render a readable transcription. Depending on νo and the
estimated tempo we choose an appropriate time signature.
Both the chords and the melody are processed in measure
chunks. The onsets and the duration of the melody notes
are quantized to a subdivision of quarter notes. These are
usually eighth notes, which gives a good tradeoff between
quantization errors and spurious notes. Depending on the
estimated key, a simple pitch spelling algorithm is applied
for both notes and chords. Basically, we choose note and
chord names such that the distance on the circle of fifths is
minimized.

6. RESULTS AND EVALUATION

In order to assess the different modules of the transcrip-
tion system, we need a database for which the chords, the
beat, and the melody line are annotated. Assembling such a
database by manually annotating audio recordings is highly
time-consuming. We found using the Band-In-A-Box 2

(BIAB) format a convenient way of generating the annota-
tion in a semi-automatic way. BIAB is software which gen-
erates musical accompaniment given a sequence of chords,
a tempo, and a style; it also supports melody tracks. Thus,
BIAB files contain all the information which is relevant
for the lead sheet generation task. Actually, BIAB even
features lead sheet printouts, which gives a convenient ref-
erence for the subjective assessment of the results.

Our database comprises 278 files adding up to about
16.5 hours of audio material. It is a subset of the Pop &
Rock database gathered by members of the Yahoo BIAB
user group. Details are available on-line [11]. The files are
rendered substituting the oboe for the singing voice, which
is an instrument that shares a number of acoustic properties
with the human voice. We used a modified version of one
of the BIAB parsers available on-line to extract the relevant
information from the BIAB files.

2 http://www.band-in-a-box.com/
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Figure 4. Histogram of the ratio detected tempo / ground-
truth tempo over the entire database.

6.1 Beat tracking evaluation

We use the same metric as in [2] to evaluate the beat track-
ing module. The performance measure is the fraction of
the longest continuous portion of the piece for which all
beats are detected. A ground-truth beat is considered cor-
rectly tracked if the absolute distance to the nearest de-
tected beat is smaller than 17.5 % of the period. If the ratio
of the detected tempo to the ground-truth tempo is either
two or three, we only consider every second or third beat,
respectively, during the evaluation and choose the starting
beat which maximizes the performance (see [2] for de-
tails). Fig. 4 depicts the histogram of the ratio detected
tempo / ground-truth tempo. There is a single file for which
the ratio is 1.5 which must be considered wrong. The aver-
age beat tracker performance is 94.1 %. For 91.4 % of all
pieces we correctly track more than 90 % of the beats.

6.2 Down-beat tracking evaluation

The down-beat information implicitly given in the BIAB
files cannot be trusted. Historically, BIAB’s support for
meters other than 4/4 is weak and sometimes the system
is abused, e.g., a 6/8 meter would be recorded as a slower
4/4 meter where each beat of the 4/4 meter collects three
beats of the 6/8 meter. Generally, the beat given in BIAB
files is not guaranteed to correspond to the tactus period,
i.e., the denominator of the time signature. It may reflect
half-time tempo, double-time tempo, or ternary meters. To
assess the proposed measure grid estimation approach we
have to take these peculiarities into account. In compliance
with the beat tracker performance measure we consider a
down-beat correctly detected if the absolute distance to the
closest ground-truth downbeat is less than 17.5 % of the
period estimated by the beat tracking module. We com-
pute the down-beat performance measure as the fraction
of the longest continuous portion for which all down-beats
were correctly detected. This is a particularly conservative
measure as it combines both the result of the beat tracking
module and the estimated measure grid based on detected
chord change points. The average down-beat performance
is 87.3 %.

6.3 Chord estimation evalution

We use basically the same evaluation measure as applied
to the 2008 MIREX chord detection task 3 . All annotated
chord symbols are mapped to their root triads resulting in

3 MIREX 2008 Evaluation Campaign, website:
http://www.music-ir.org/mirex/2008/

five chord classes: major, minor, diminished, augmented,
and suspended. (Note that 98.3 % of the chord symbols in
our database fall into the major and minor categories.) This
results in 5 · 12 + 1 possible states, including the no-chord
state, which is used in the two pickup bars. The evalua-
tion measure is the overlap in seconds between the detected
chord sequence and the ground-truth sequence mapped to
the 61 possible states as described above. The average
overlap for the entire database is 76.4 % for the initial chord
detection phase and 79.3 % for the refined estimation us-
ing transition probabilities depending on the position in the
measure. The average overlap quantized to beats, which
is more relevant to the transcription task, is 80.0 %; it is
82.7 % when the pickup bars are discarded.

6.4 Key estimation evaluation

For transcription purposes, a confusion of relative major
and minor keys does not matter as the key signature re-
mains the same. To evaluate the key estimation algorithms
we thus compute the difference in the numbers of sharp
or flat symbols, i.e., the smallest distance on the circle of
fifths either clockwise (positive) or counterclockwise (neg-
ative). Fig. 5 shows the histogram of the key error mea-
sure for both key estimation approaches over the entire
database. Both approaches correctly estimate the key sig-
nature for the majority of the pieces. However, the portion
of the database for which the absolute key signature error
is not greater than one is 80.2 % using the chroma profiles
and 93.5 % using the mean chord likelihoods. The chroma-
based approach is prone to confuse minor keys with their
relative major keys (+3), e.g., A major instead of A mi-
nor, or with the key of the (major) dominant in the case
of harmonic minor (+4), e.g., E major instead of A minor.
Examining the statistics reveals that the variance remains
significant for the chroma profiles. One could try to use
a Gaussian classifier instead but, here, the method using
the mean chord likelihoods works very well. In Pop and
Rock music the chord range of the diatonic scale is often
extended to include chords of keys which are close on the
circle of fifths, e.g., a major chord on the minor 7th degree
of a major scale (subdominant of the subdominant); this
explains absolute key signature errors of one.

6.5 Melody tracking evaluation

For the melody estimation, we selected 11 songs that fit our
definition of the main melody. For each song, the melody
estimation algorithm returns the transcribed notes of the
melody, with their MIDI note number, onset and offset
times. A transcribed note is considered correct if there is a
note in the reference with the same MIDI note number of
which the onset time is close to the one of the transcribed
note. The absolute difference between these onset times
should be less than 150 ms. We compute precision, recall,
and f-measure, and we provide the score obtained using the
perceptually motivated measures in [12]. On our database,
we obtain average recall, precision and f-measure of, re-
spectively, 63 %, 68 % and 63 %. The average perceptive
F-measure is 69 %. Fig. 6 shows the box and whiskers for
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Figure 5. Histogram of the key signature error in steps on
the circle of fifths for the chroma-based (top) and the chord
likelihood-based method (bottom).
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Figure 6. Box and whiskers plot of the results for melody
estimation: Recall (R), Precision (P), F-measure (F) and
perceptive F-measure (Perc. F).

the 11 songs. The outlier corresponds to a song for which
the melody was too fast and too variable for the melody
tracker to follow. The results are promising; however, the
database we used was rather small and experiments on a
bigger and more realistic database should be held in the
future.

7. CONCLUSIONS AND PERSPECTIVES

We have proposed a lead sheet generation system. The
tempo, time signature, chords, key, and melody were han-
dled by several modules that can interact with each other.
The chord sequence helps in determining the time signa-
ture, which in turn can be used to refine the chord sequence
and also defines the minimum note duration for quantiz-
ing the melody. Our approach groups several modules that
achieve state-of-the-art performance on each sub-task. As-
sessing the overall quality of the generated transcription
is not trivial and subjective evaluation should be held for
that purpose. For some examples available on-line [11] the
resulting score is close to musician expectations. Some
assumptions make the system targeted at Western music
genres like Pop and Rock as represented by the chosen
database. Evaluation of the sub-systems on real audio data
remains to be done. The system could be further improved
by allowing more joint estimations. A global model could
cover all the aspects of the problem for which all the pa-
rameters for the different modules are jointly estimated.
However, as for the melody module, such a model might

be too complicated to be directly solved. Instead, this inte-
gration can be approximated for instance by including the
detected beat positions in the melody note duration model.
The melody estimation and separation can also be used to
improve the chord sequence estimation.
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