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Abstract

We demonstrate a convenient and accurate method for
fully automatic camera calibration. The method needs at
least two cameras and one projector to function, but the
cameras need not to be synchronized. By projecting a pre-
defined black and white sequence into the cameras’ field of
view a large number of individual points are tagged by a bi-
nary bit sequence over time. This solves the correspondence
problem among the adjacent views and furthermore allows
for Forward Error Correction (FEC) yielding a dense er-
ror free and subpixel accurate point cloud which is used
for internal and external camera calibration. Experimen-
tal results and comparison with varying permutations of the
projection sequence are given at the end of this paper. Fi-
nally, the method gives instant feedback to the user as the
resulting calibration point cloud is in fact a 3D scan of the
arbitrary calibration scene which can be easily visualized.

1. Introduction
Camera Calibration is a permanent and time consuming

obstacle in computer vision. In most cases camera calibra-
tion simply distracts from the actual task that a researcher
intends to focus on when working with his or her camera
setup. For this reason camera calibration should ideally be
a short and simple one click process.

The main contribution of this paper is the extension of
existing calibration frameworks, which yields an algorithm
for the fully automatic internal and external self-calibration
of multiple cameras and projectors.

Camera calibration, also known as camera resectioning,
is the process of finding a set of parameters in the form of
a 3 × 4 matrix P, that precisely map 3D points in a homo-
geneous world coordinate system [xw, yw, zw, 1]T in front
of the camera onto the image plane in homogeneous pixel
coordinates [u, v, 1]T . We can decompose the 3 × 4 cam-
era matrix into internal and external parameters, so that the
mapping can be written as
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given the scaling factor s, mapping between euclidean
and metric space. The matrix K contains the intrinsic cam-
era parameters such as focal length, principal point, and
pixel aspect ratio. Matrix R and vector t denote the cam-
era’s external parameters and define the camera’s position
and its orientation in a world coordinate system.

In the absence of camera parameters existing computer
vision techniques are already quite powerful. We can per-
form face recognition, objection segmentation or object
tracking, compute disparity maps in a stereo setup, and
much more. However, once a multi-camera system is avail-
able, the presence of precise camera parameters opens the
door to a myriad of new possibilities. Knowing each cam-
era’s intrinsics and extrinsics, disparity maps can be con-
verted to depth maps. Since we know the precise location
and orientation of each camera, these depth maps can fur-
thermore be merged into a 3D model of the scene [3]. Once
a certain amount of the scene geometry is known classic
image processing algorithms can be fed with more input re-
sulting in more accurate face recognition, object classifica-
tion or object segmentation. Given a 3D model of a scene in
a world coordinate system we can accurately measure dis-
tances between any two points or augment the model with
computer graphics which for instance allows for scene re-
lighting.

Multi-camera systems are comprised of at least two cam-
eras. Additionally, we need one projector which can be au-
tomatically calibrated along with the cameras. The method
presented here places no upper limit to the amount of cam-
eras and projectors to be calibrated simultaneously.

1.1. Related Work

There exist a variety of camera calibration methods such
as the Direct Linear Transformation (DLT) [1], Tsai’s ap-
proach [10], and the Zhang method [12] of which the lat-



ter two have remained the dominant algorithms used in the
field. A good introduction into the field of camera cali-
bration is given in [2]. In practice all of the above meth-
ods depend on some sort of calibration object which is in
most cases a planar checkerboard pattern. To establish lin-
early independent correspondences among different camera
views, several pictures of the calibration object under dif-
ferent orientations have to be taken for each camera pair.
Knowing the number of black and white squares in horizon-
tal and vertical direction as well as their exact size projec-
tion matrices for all cameras can then be computed automat-
ically. Calibrating projectors is done similarly by precisely
matching the checkerboard pattern with another checker-
board pattern that is projected by the projector. Thus, the
projector can be calibrated by essentially treating it as a
camera itself, such as in [11].

A different approach for establishing point correspon-
dences has been presented by Svoboda et al. in [9]. They
use a set of N ≥ 3 synchronized cameras and a modified
laser pointer to record an image sequence where the bright
dot originating from the tip of the laser pointer can be seen
in many views simultaneously. This results in a correspon-
dence set when moving the laser pointer within the working
volume over time. A modified approach is applied in [6]
where two markers are attached to a stick of a predefined
length. However, both processes still require manual labor
and the ability to freely move around within the working
volume, which may not always be the case. Additionally
synchronizing cameras requires additional hardware which
is usually expensive or simply not available.

2. The Working Principle
We propose a new technique that accurately identifies

points in all of the cameras used – independent of their
orientation towards one another. In order to overcome the
problem of having to manually present some sort of cali-
bration object to the cameras we simply project the cali-
bration object into the scene with an off-the-shelf projec-
tor. When projecting a pre-defined black and white se-
quence into the working volume a large number of in-
dividual points are tagged by a binary bit sequence over
time. Given a projector resolution of M × N , we need at
least k = ceil (log2 (M ·N)) bits to uniquely code each
pixel in the projector matrix. A projector with a resolution
of 1920 × 1080 can therefore code over 2 million points
with a sequence length of not more than k = 21 frames.
In practice two additional frames, one all white and one
all black are used as threshold indicators. This technique
is closely related to 3D measuring with structured light,
a good overview of which is given in [8]. However, to
our knowledge, structured light projection sequences have
never before been used for automatic camera calibration.

The algorithm is comprised of eight functional blocks,
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Figure 1. Schematic block diagram illustrating the functional
overview of the presented system.

which are illustrated in figure 1. Sequence generation, se-
quence projection and its capture. Each camera’s recorded
image sequence is then decoded, yielding a bit pattern for
every point in the camera’s field of view. Next, point cor-
respondences between all cameras - using the points’ bit
patterns - are found and verified by a fundamental matrix
based RANSAC [4]. Once the correspondence set has ac-
curately been established, the camera setup plus, if desired,
the projectors can be calibrated utilizing a linear model and
a non-linear model, allowing to estimate and compensate
for radial lens distortion. The resulting calibration is iter-
atively refined until a certain accuracy is reached in terms
of the mean re-projection error and its standard deviation.
Finally, visualization of the scene geometry along with the
position of all cameras and projectors provides a subjective
quality measure.

3. Hardware Setup
The testing environment consists of a setup comprised of

four Basler Scout 1.3 Megapixel GiGE Vision cameras with
a resolution of 1294×964 pixel and an Epson TW3000 LCD
projector with a native resolution of 1920 × 1080 pixel. In
practice any projector and any number of N ≥ 2 cameras
can be used. The actual setup can be seen in fig. 2. The
cameras need not to be synchronized as pattern projection
for each of the k bits and pattern capture are performed con-
secutively.

Figure 2. The image shows the hardware setup used for calibration,
consisting of four cameras and one projector.



No predefined calibration object is needed. It is, how-
ever, important that the projected calibration pattern is able
to cover as much of each camera’s field of view as possi-
ble, resulting in an evenly spread point cloud and a more
accurate calibration.

4. Gray Code Calibration Sequence
Ideally, as mentioned before, each image pixel in each

camera receives a unique self-identifying bit sequence serv-
ing as an identifier. After thresholding the recorded calibra-
tion sequence we can decode the pixel identifying image I
by multiplying the binary image set IB1,...,k with different
powers of 2, which can be written as:

I =
k∑

i=1

IBi · 2i−1 (2)

High frequency black and white shifts in the pattern
can easily cause aliasing errors in the camera views. So,
in practice it is beneficial to code the sequence as a two-
dimensional Gray Code [5] where higher frequency com-
ponents resemble bits of lower significance. A thresholded
sequence of length k = 12 is shown in fig. 3.
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Figure 3. Captured and thresholded two-dimensional Gray Code.
We notice that the images become aliased towards the least signif-
icant bit (LSB), making that particular bit useless for calibration.

Decoding the captured Gray Code calibration sequence
in fig. 3 gives each pixel in each camera one of around two
million unique identifiers. We visualize identifiers with a
low number as blue, proceeding through the spectrum with
increasing ID, passing green, yellow and orange, until a
maximum number in the dark red domain is reached. Due
to limitations in the perception of that many colors small in-
dividual regions with identical identifiers cannot be seen in
the illustration given in fig. 4 but the overall concept should
become clear. Notice the faceting of the colored regions
resulting in a very fine identifier grid in each camera view.

Figure 4. The image shows the decoded calibration sequence for
four different camera views. Despite the large number of correct
correspondences (three examples shown in green), without any
kind of FEC scheme noise in the identifying image can lead to
mismatches (one example shown in red). These mismatches are
generally caused by bit errors towards the codeword’s LSB.

Problems occur at code boundaries where the code is of-
ten inaccurately decoded. Additionally, if b bits of lower
significance cannot be used the identifying grid essentially
increases by a factor of f = 2b. This makes calibration
less accurate and can, if bits of higher order get inaccurately
identified, lead to completely wrong correspondences.

The aspect of wrong point correspondences can to some
extend be neglected as an erroneously detected Gray Code
sequence results in relatively large errors, which can be eas-
ily detected by a later RANSAC runthrough but the aspect
of losing b bits due to aliasing comes at a higher cost as
the size of regions with a unique identifier increases. This
makes the estimation of a given identifier’s centroid diffi-
cult. A solution to this problem may be given in the form of
utilizing a forward error correcting (FEC) scheme such as
a BHC-Code or a Reed-Solomon Code which are both well
described in [7]. Considering that roughly two million point
correspondences are much more than enough for a later cal-
ibration step and can furthermore be problematic as they
require a considerable amount of memory to be processed,
we conclude that a modified calibration sequence with less
but highly accurate points might be better.

5. The Modified Calibration Sequence

We postulated that less but highly accurate point corre-
spondences give a significantly lower reprojection error in
average than a large number of noisy correspondences. We
therefore modify the calibration pattern to project dots of
relatively low density. Each dot is circular in shape and has



Figure 5. To illustrate the code we show the example for a dot with
the identifier #999. This identifier is converted to a binary repre-
sentation which yields the sequence 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0. As
the actual sequence consisted of 513 ≤ j ≤ 1024 dots, 10 frames
are needed to code this particular dot uniquely.

a radius r of only a few pixels, so that its center can be es-
timated with subpixel precision. The j dots again receive
a unique ID = 1, . . . , j which is converted to a binary se-
quence, used to turn the dot on and off on a frame by frame
basis. This is exemplified for the identifier #999 in fig. 5.

6. Decoding the Calibration Sequence

Decoding the recorded modified calibration sequence IB
is in accordance with the formulation in eq. 2. The prob-
lems of the standard Gray Code sequence which occur es-
pecially around identifier boundaries are overcome entirely.
As the approximate shape of each dot is known in advance
each dot’s center can be estimated with a high degree of cer-
tainty. An example of the decoded identifier image I using
a pattern with M × N dots is given in figure 6. As will be
shown later, this approach yields far better results which is
in agreement with the initial lemma of the previous section.

The first frame of the sequence contains an image with
all dots turn on followed by an image where the projector
is not projecting anything. Subtracting these two from one
another we receive difference image D which serves as a
threshold indicator. Due to varying reflectivity within the
scene global thresholding is not an option because white
dots projected on dark material are likely to have a lower
intensity than dark regions on a highly reflective surface.
We therefore subdivide D into a number of relatively large
macroblocks MB and perform individual thresholding de-
pending on the noise level in each block. As only noise can
create negative values in D, the absolute value of the lowest
element in each MB serves as the threshold for that par-
ticular block. The resulting binary mask then undergoes a
final erosion step to shrink dots in the mask by one pixel in
radius. This compensates for noise at the boundaries and
makes the detection of identifiers very robust.

7. Projector Calibration

The calibration sequence that is projected onto the scene
can be interpreted as a binary image set IB1,...,k itself.
Treating this set as an image sequence captured by the pro-
jector fully self-calibrates the projector along with the cam-

Figure 6. This is the decoded modified calibration sequence I.
Each dot has been uniquely identified in all four camera views.
The center of each dot can be estimated by averaging over all pix-
els with the same identifier, thus automatically establishing a cor-
respondence set with sub-pixel precision.

eras. Thresholding and the computation of the individual
dot’s centroids needs, however, not to be performed as their
precise locations are known beforehand. Notice that unlike
previous projector calibration methods, where a calibration
pattern print out is semi-automatically of even manually
matched be the projector, the procedure presented here is
very convenient as again no user interaction whatsoever is
necessary. If N ≥ 3 cameras are used projectors can also be
excluded from the global calibration loop if this should be-
come necessary due to the minimization of calibration time.
Additionally there is neither an upper limit on the amount of
projectors nor is there downside of increasing the number of
projectors which are to be calibrated this way. On the con-
trary, each additional projector contributes more dots from
different angles into the scene, potentially making the re-
sulting calibration more robust.

8. Results
In this section we will discuss the quality of the proposed

calibration method with respect to different permutations of
the calibration sequence. Fig. 7 illustrates the external pa-
rameter set for N = 4 cameras and an additional projec-
tor. The green camera pyramids point towards the captured
scene. Their opening angle and their length serve as indi-
cators for both their field of view and their focal length, re-
spectively. The individual uv-axes, denoting origins of the
individual image planes, are indicated in blue. The same
goes for the projector pyramid, which is for clarification
shown in blue. The 3D position of all dot centroids having
survived the RANSAC verification are marked in red and
give valuable feedback to the person doing the calibration



as they essentially represent of low resolution 3D scan of
the captured scene. Notice that presently calibration lacks
both a global size factor as well as the origin of a predefined
world coordinate system. The later can be compensated for
by simply defining the first camera’s center as the center of
that world coordinate system. The other aspect is something
to be worked on in the future.
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Figure 7. The image above illustrates the external camera- [1 to
4] (green) and projector [5] (blue) parameters with respect to the
point cloud (red) in front of the camera setup.

8.1. Pixel Reprojection Error

The pixel reprojection error serves as a quantitative mea-
sure of camera calibration quality. Given the triangulated
3D point cloud, each point that has survived RANSAC ver-
ification is reprojected into each camera, using the calcu-
lated projection matrix. This is shown for camera 1 in fig.
8a and the projector in fig. 8b. Points that were recorded
in that particular camera are marked as circles, their color
being blue if the point was also detected in at least two other
camera or projector views. If the point has no counterparts
within the correspondence set it is shown as a red circle.
Reprojected points are marked with a + and should ideally
be located in the exact center of their corresponding circle.
The difference between reprojected location and the actu-
ally measured location during the decoding step given in I
is the reprojection error. In practice the reprojection error
is usually larger at image boundaries as radial distortions
due to the optical system used in the cameras become more
apparent. Somewhat surprisingly this is also true for the op-
tics of the projector even though its high quality object lens
should show no signs of radial distortion when projecting
rectangular images onto a screen.

Notice the variable image sizes in fig. 8. As mentioned
before, camera resolution was 1294 × 964 pixel whereas
projector resolution was 1920 × 1080 pixels as the method
is flexible in terms of camera type and resolution.
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Figure 8. Reprojection error within the image plane of camera 1 (a)
and the projector (b). Measured points with counterparts within
the correspondence set are shown in blue. Should they have no
equivalent they are shown in red. Notice that this is especially true
for the projector as its includes all possible dot IDs which need
not necessarily have to be captured be any camera. Reprojected
3D points are marked with a +.

The reprojection error for our setup consisting of four
cameras and one projector is shown shown in fig. 9. The
total mean reprojection error is 0, 29 pixels with a standard
deviation of 0, 20 pixels. It is important to mention that this
result, despite being satisfactory, is not necessarily in itself
meaningful as one has to compare this value with the distri-
bution of points within the image space that have survived



the RANSAC verification. An even spread throughout the
image plane is desirable, a property that has been demon-
strated in fig. 8. As we decrease radius and spacing to
r = s = 1 we get results similar to the unmodified calibra-
tion sequence, yielding a relatively large reprojection error
of 0.8 pixels in average.
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Figure 9. Reprojection error of cameras [1 to 4] and the projector
[5] (b). All points: Mean reprojection error (mean) is 0, 29 pixels,
standard deviation (std) is 0, 20.

8.2. Time Consumption

Processing time depends both on the accuracy and num-
ber of established point correspondences. One could as-
sume a O(n) dependency on the number of dots surviv-
ing the RANSAC iterations but in practice it seems to be
somewhat more complicated. A more detailed analysis of
the relation between actual camera placing, dot radius, dot
clearance, and calibration time will be given in the future.
Notice that the slowest computation time is below 5 min-
utes, whereas the fastest and most accurate calibration re-
sults were obtained in only 90 seconds due to rapid conver-
gence of the correspondence set. The implementation con-
tains C++ parts but has mainly been written in Matlab and
is running on a Quad Core i7 3.2 GHz CPU with 6 GByte of
system memory.

9. Summary
We have shown that fully automatic camera self-

calibration is possible by extending existing frameworks
with the method presented in this paper. In comparison to
manual camera calibration the benefits are straightforward.
Automatic camera self-calibration can be done without user
interaction. This allows for great flexibility when moving
cameras around or when changing the internal parameters
such as focal length or the entire lens. Recalibration of
a given multi-camera multi-projector system can now be
performed in the loop during runtime if necessary. Time

savings in camera calibration are significant especially con-
sidering the automatic projector calibration. Our results
showed a mean reprojection error of under 0, 29 pixels with
a standard deviation of 0, 20 pixels under optimal condi-
tions. Visualization of the triangulated calibration point
cloud along with all internal and external camera param-
eters such as shown in fig. 7 gives valuable feedback by
instantly indicating plausibility of the calibration results.
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