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ABSTRACT

The objective of this work is to investigate a new approach
for object segmentation in videos. While some amount of
user interaction is still necessary for most algorithmshis t
field, these can be reduced making use of certain propefties o
graph-based image segmentation algorithms. Based on one of
these algorithms a framework is proposed, that tracks icdiv

ual foreground objects through arbitrary video sequenuds a Fig. 1. After the processing of the scribbles added by the user,
partly automates the necessary corrections required finem t local homogeneous subtrees of the BPT are formed (marked
user. Experimental results suggest, that the proposed algwith dashed rectangles), denoted herdljy 77" and75'.

rithm performs well on both low- and high-resolution video

sequences and can even cope with motion blur.

2. OBJECT EXTRACTION AND THE MRSST

1. INTRODUCTION

Among the various image segmentation approaches graph-
Both fast segmentation of real world objects in still imageshased algorithms, such as the one presented by Cooray et al.
and tracking of theses objects throughout a video sequendae[3], have lately received significant attention. This &ty
have many applications in video processing and editing [1]due to their ability to represent image segments of various
While a lot of progress has been made concerning the exsizes as nodes in a BPT. Among them is the MRSST pre-
traction of binary object masks for single frames, automati sented in [4], which introduces so-called syntactical dess
generation of such masks for an entire video remains mainlin order to associate image regions with features such as spa
unsolved. Since dynamic foreground objects both need to kgl compactness and shape regularity. Initially the MRSST
correctly identified and can also undergo sudden changes treats every pixel of an image as a node in a graph that is con-
shape and color, most video segmentation tools rely on useected via weighted edges to its four direct neighbors. The
interaction in order to produce accurate results. In this pasegmentation of the image is achieved by iteratively mergin
per a new framework for the tracking of foreground objectghose nodes that are connected by the least-cost link, which
in video sequences based on Medified Recursive Shortest also enforces the recalculation of associated graph edges a
Spanning Tree AlgorithifMRSST) is presented. It incorpo- their weights. During this process the BPT is created by stor
rates the interactive Object Contour Extraction method proing the order in which nodes are merged and establishing a
posed by Adamek and O’Connor in [2]. Additionally, a new father-child relationship between the newly created nodk a
approach to identify corresponding image regions in consec¢he two merged ones. The output of the MRSST in this case
utive frames is integrated usingonary partition tree(BPT)  is a BPT, whose root node contains the entire image while the
for each frame. The remainder of the paper is structured deafs are the individual pixels of the image. In [2] Adamek
follows. Section 2 briefly revisits the segmentation of colo and O’Connor proposed a method that allows to quickly ex-
images using the MRSST and its applicability to the task otract arbitrary foreground shapes from a BPT by letting the
object extraction. Both a general outline of the proposgd-al user draw so-called scribbles on the image. Both foreground
rithm and detailed descriptions of two of its main composent (F) and backgroundR) scribbles are passed to the leafs of
are given in Section 3. Experimental results and objectivéhe BPT in the form of competing labels. These are then it-
evaluation measures are provided in section 4. Section 5 coeratively propagated up the BPT. When the algorithm tries to
cludes the paper with a short discussion and future dinegtio assign both labels to the same node, that node is marked as



a conflict node €) and all its parent nodes are marked with START

the conflict label as well. This results in the formation of ho frame id =0
mogeneously labeled local subtrees that either belongiexcl
sively to foreground or background. An example of a labele foad frame »

construct BPT

BPT is given in figure 1, where each subtree represents

individual spatial region of its own. By adding further deri
bles to the image the resulting foreground mask can be refini get labels from user
further. ey
ey
3. PROPOSED ALGORITHM . o result modied 5
The new object tracking algorithm, that is proposed in thit ¢
paper, consists of a three-stage approach as outlined brg figt find matching
2 for a video sequence of frames. Initially a BPT is created | e e el
for the first frame of the sequence which is then labeled b consliuet BE1 e e ooape

the user in order to correctly identify the foreground objec
to be tracked, which results in the extraction of a shépe
The labeling is done using the method described in [2]. For
every consecutive frame a BPT is also created. An initia est
mate of the shap8™*! of the tracked object in the next frame
is determined by matching local subtrees of the BPT among
neighboring frames. More details on this technique are pro-
vided in section 3.1. Having obtained this estimate, theatbj & v @
contourC™ is transferred into the next frame and used fur- iy
ther to correct the object contoG*+! of the predicted object
shapeS™t!. See section 3.2 for details. Afterwards the pre- frame 7 frame n +1

dicted object shape is presented to the user, who can now add ) _ _ )

further labels to refine the object shape. An approach witljf'g' 3. left: object s.hape in the previous franrgght: par-
a similar workflow, which however does not make use of dially colnstructed object shape for the current frame weth-c
graphical image representation and therefore reliesysotel ter&g""" and the moved reference shape with ceritex- .
the object contour has been proposed in [5].

Fig. 2. General structure of the algorithm.

o _ transferred version &8" it is now possible to compute a rela-
3.1. Identification of Corresponding Subtrees tive overlapp:,, (7" ) between every subtree in the current

Before describing the actual algorithm for transferring th fprgr;;a and"the en?re ObJECt sTthle in the _prev:jotls framel.
current object shap&™ into the next frame, a number of itionally, a color cost.,(T;") is assigned to every lo-

definitions have to be made. The areas in pixels occupie‘éal subtree in the new frame. Itis computed as the smallest

1 euclidean distance iBIEL*u*v* color space between the av-
t?y shapess™ and S"“_ are dgnoted as’ aqda@* respec- erage color of "™ and any subtre&” ir? the previous frame
tively. The area associated with a subtree in the currentdra J i

. . . 1 . . .
is consequently denoted b, . A similar notation is used to  Within a search radius(Z}"). Initially the search radius is

describe the center pixel of a shapén the current framés’  settol, /aZ"'. A greedy algorithm that tests every subtree in

: . T, -
or the center pixel of a subtree in the next frafije In or-  yho ey frame for inclusion in the new object shape is now de-

der to evaluate the suitability of a subtrgg*" for inclusion veloped: During every iteration the subtree with the snsalle
in the new object shapg"**, the previously determined ob- inclusion cost as given in equation 2 is chosen and included
ject shape is transferred into the next frame using the motioin the new object shape.

vector given in equation 1.

Ceo(T)H) > cmoe

V Co (T;ﬁl) < cmin )

+1-— cOU(Tj”“), else

= (gt a4 8 (af - aFt)/ag - @ (1) iy ] 0
Cinc(Tj ) =

The choice of this motion vector ensures that the predicted
object shapeS™*! is initially placed at the same location
as the previous object shape, see figure 3 for a simple exxdditionally, the subtred?’ in the previous frame with the
ample. Once more local subtrees have been assigned to thallest color distance to the included subtig€™ is re-
new object shape, the location of the predicted object shapaoved from the previous object shape to ensure that the color
is adapted to fit to the new object location. Based on thelistributions ofS™ and S™*! remain identical. The thresh-

(:C(,(TJTl*l)

.max
Cco



olds ¢2**, cp** andr™® used in equation 2 are needed to
control the behaviour of the inclusion algorithm. When a-sub
tree receives an infinite inclusion cost, then it is splibiits
respective shildren which are then examined during the ne
iteration, thus making use of the BPT’s structure to quickly
find a best match. Should it not be possible to include an
candidate subtree during the currentiteration, becausaino
tree received a finite inclusion cost, then the three thildsho

are adapted as given by the the following stage description: o ) ) ) )
Fig. 5. left: initially predicted object shape (outlined im red),

1. Inclusion of subtreeCE’J?erl with at least0% overlapp, that was constructed using the subtree matching approach;
small color difference and little individual segment mo- center automatically generated scribbles (green for fore-
tion r(TJ”“) ground, red for backgroundjight: corrected object shape,

after the application of the scribbles.

2. Inclusion of subtreeCE’;“rl with at least;0% overlapp,

bigger color difference and more segment motion
of the patch is expected to remain a background pixel. A best
match for thd x [ patch is now found by performing a fullsize
blocksearch around the initial contour location. Once th&t b
match has been identified, the previously obtained autemati
. scribbles are added to the BPT of the new frame around the
3.2. Boundary Correction corrected location of the considered contour pixel. An exam

Since object deformations usually manifest themselves asRle for such a boundary correction step is provided in figure
modification of the object boundary, it is necessary to adop®- Of particular interest in the displayed frame is the flag th
the object contout™ to the new object shap§™+!. The occupies the lower right part of the image and is correctly
strategy proposed here is to first move the previous 0bje@,glentified as part of the background despite having the same
shape into the current frame. Afterwards every pixel alongolor as the foreground object.

the original object contour is examined. For a square pdtch o
sizelx1,l = i\/a_", around the pixel location in the previous
frame the contrast measure given in equation 3 is computed,
whereLp, up, vp andLp, ug, vr are the three components

of the average colors of foreground and background insiele th! "€ Propsed algorithm has been implemente€in+ and
patch, respectively. tested on the CIF test sequenttsuse HighwayandGroup.

It was also tested on one sequence each from the following
~ (Lp — Lg)?+ (up —up)? + (vr —vp)? 3 movies in DVD resolution:Harry Potter and the Sorcerer’s
con = 3.955. 955 () Stone Planet Earth(BBC Documentary) andstar Wars -
isode IV Some of these also include global camera mo-

E
Should the contrast between background and foreground lﬂ%)n or moving background objects. Keyframes and extracted

hlgher_ tharp.l% then a local scrlbbl_e mod_el as sho_wn_m f!g- foreground objects are shown in figure 6. In order to objec-
ure 4 is built. The scribble model is basically a distribatio tively evaluate the algorithm, all automatically genedaté-
ject masks were compared with manually segmented grouhdtru

background ..
A masks. For each frame prec_:|_3|q1),(recall () and f-mea;ure

B (f) were computed. In addition, the number of user interac-
tions (1) and the number of manually labeled pixel} ger
frame were recorded. In this context, a user interactioris d
fined as a single connected scribble in either foreground or
Fig. 4. Original object contourléft) and adapted automatic background color. The per-frame values forr, f, u and
scribbles (ight). B and F indicate background and fore- [ for the Housesequence are given in figure 7. Due to the
ground labels, respectively. foreground object (a person walking from right to left) ente

ing the scene during the first frames of the sequence satisfac

of labels over the square patch mentioned above, that is atry results are only achieved from frame five onwards, when
sumed to extract the correct object shape, if these automatihe person is visible in its entirety. The average measures f
scribbles were added to an unlabeled BPT. The actual distréll sequences are given in table 1. In addition, the percent-
bution is chosen with respect to possible contour deformaage of frames, for which less thanor less thar6 scribbles
tions and only the one background pixel closest to the centavere neededrel, andrelg respectively) are provided. Of

3. General inclusion of all segmentg'*!, that have a
color distribution similar t&”* and lie somewhere within
the entire region of interest

4. EVALUATION
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Fig. 6. Sample frames and extracted foreground objects for
all tested sequences. For the high -resolution sequenses di
played in the right columns only a magnified region of interes

interactions (u)

is shown. g

[Seauence [p [ [J _ [relh [rels ] R
Group 93.0% | 89.3% | 91.0% | 70.7% | 92.7%
Highway 92.7% 1 89.2% | 90.1% | 88.2% | 94.1% | Fig. 7. top: precision, recall and f-measure values for the au-
House 93.3% | 86.4% | 88.7% | 70.3% | 94.6% | tomatically generated object masks for tHeusesequence;

Harry Potter | 87.8% | 94.2% | 90.8% | 54.2% | 80.6 bottom user interactions needed to correct these masks
Planet Earth| 92.3% | 92.0% | 92.1% | 67.5% | 95.8%

StarWars | 97.6% | 98.3 | 97.9 | 100% | 100% | work will include the incorporation of a background subtrac
tion approach in order to reduce the amount of misclassifica-
tion done during the first stage of the algorithm.

Table 1. Average precision, recall and f-measure per se
guence.rely andrelg indicate the percentage of frames for

which < 4 respectively< 6 scribbles where necessary.
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