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ABSTRACT

Global motion estimation is an important task for various

video processing techniques. The estimation itself has to be

robust in presence of arbitrarily moving foreground objects.

For that task, two different kinds of estimation methods exist.

On the one hand, pixel-based approaches deliver more pre-

cise results and work more robust on video sequences with

foreground objects. On the other hand, when working on en-

coded video streams, block-based methods can be used for a

much faster but often less precise estimation. We propose a

two step estimation method based on the determination and

tracking of feature points of video frames and robust motion

model estimation using the Helmholtz principle. Therefore,

good trackable features are detected and tracked in video se-

quences. Subsequently, a perspective motion model is de-

rived from the resulting correspondencies by removing fea-

ture pairs not belonging to global motion.

Index Terms— Global motion estimation, Helmholtz

Tradeoff Estimator, feature tracking, robust regression

1. INTRODUCTION

Motion estimation is a fundamental problem in video analysis

and coding tasks. The knowledge of local motion for exam-

ple is used in video compression to remove temporal corre-

lation. A more complex description of motion in video se-

quences is the global motion represented by a higher-order

motion model.

In this paper, global motion means the background trans-

formation between two adjacent frames of a video sequence.

With the knowledge of such a transformation model, vari-

ous problems concerning video processing, for example back-

ground sprite generation for video summarization or cam-

era motion characterization for classification can be solved.

Irani et al. describe in [1] how background sprites generated

by global motion estimation (GME) can be used to get an

overview of a video sequence.

Approaches for improving video coding, based on or as-

sisted by global motion models also already exist. Glantz et

al. for example describe a post filter based on global motion

temporal filtering [2]. This filter uses temporal correlation

of adjacent frames for blocking artifact reduction. Therefore,

highly precise and robust GME is required.

Generally, GME techniques are separated into two classes.

Pixel-based approaches, working directly on pixel data are

said to deliver more accurate results than motion-vector-

based ones. However, heavy computation load is their main

drawback in most cases. A well-known pixel-based approach

works on error minimization by gradient descent. Dufaux

and Konrad use this method in [5] to get a perspective mo-

tion model directly in the pixel domain. In block-based

approaches, working on motion vector fields, detection and

removal of outliers not belonging to global motion (local mo-

tion models and misestimations) are the key tasks of robust

regression methods. Smolić et al. for example use a robust

M-estimator for such GME [3]. In [4], we presented a GME

method that estimates on regular block structures with motion

vectors as existing in H.264/AVC video streams.

We present a two step hybrid approach which first esti-

mates local motion models on good trackable features of a

video frame and then estimates a global motion model out of

these with the use of a highly robust regression method based

on the Helmholtz principle.

The rest of this paper is organized as follows. Section 2

shortly describes how feature correspondencies for the GME

are generated. In Section 3 the outlier rejection method and

the final motion model calculation is described. Section 4

presents and discusses the results. Finally, Section 5 summa-

rizes this paper.

2. FEATURE TRACKING

Motion vectors in regular block structures are generated for

every block, whether they contribute to the global motion or

not. When used in GME, this severely affects the quality of

the estimation. Another quality limiting factor of block mo-

tion data is the motion information resolution which is often

limited to half or quarter-pel. Hence, when choosing only

good trackable features in a video frame and tracking them

with an accuracy much higher than quarter-pel, better GME
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results are possible. Therefore, for motion vector field gener-

ation a KLT feature tracker as described in [6] is used.

Feature tracking means the search for the correspondence

of a feature point I(x) of a given frame I in a consecutive

frame J . The result is a displacement (or motion) vector d
for each feature point, describing its linear translational mo-

tion. Such a relationship of two corresponding features can

be defined as

J(x) ≈ I(x− d). (1)

Tracking a feature can be done by gradient descent. For a

feature window W of a feature point, the mean squared er-

ror between two frames is minimized by finding an optimal

displacement vector d:

ε =

∫
W

[I(x− d)− J(x)]
2
dx. (2)

As the displacement is expected to be relatively small,

I(x− d) can be approximated by a Taylor series of first

degree with the two dimensional gradient vector g:

I(x− d) = I(x)− g · d. (3)

Then, by setting h = I(x)− J(x), (2) can be written as

ε =

∫
W

(h− g · d)2 dx. (4)

This equation can be interpreted as a quadratic error function

ε(d). The minimum of this function can be found by differ-

entiation with respect to d and setting the result to zero:∫
W

(h− g · d)g dA = 0 (5)

which leads to an easy to solve equation system of two scalar

equations with two unknowns.

3. MODEL ESTIMATION

A lot of features that are selected and tracked belong to fore-

ground objects. These features lead to misestimation when

they are not rejected. Rejecting such outliers is the task of ro-

bust estimators. We use a modified version of the Helmholtz

Tradeoff Estimator first described in [7]. It evaluates ran-

domly selected subsets from a dataset. The amount m of

needed subsets can be calculated by

m =
log(1− P )

log(1− (1− ε)p)
, (6)

where P is the desired probability of finding a good estima-

tion in an environment with an outlier percentage of at most ε
for a model with p parameters. This means that for P = 95%
and ε = 80%, more than 1,170,000 subsets have to be evalu-

ated, when a perspective eight parameter model is to be esti-

mated out of diplacement vectors. Thus, a direct usage of the

original Helmholtz Tradeoff Estimator is too complex.

When having n feature positions and their motion vec-

tors, for each subset s two correspondencies (x, y) ↔ (x′, y′)
(meaning x ↔ (x+ d)) are taken and a four parameter mo-

tion model only containing translation, rotation and scaling is

calculated:

⎛
⎜⎝
x1,s y1,s 1 0
y1,s −x1,s 0 1
x2,s y2,s 1 0
y2,s −x2,s 0 1

⎞
⎟⎠ ·

⎛
⎜⎝
m0,s

m1,s

m2,s

m3,s

⎞
⎟⎠ =

⎛
⎜⎜⎝
x

′
1,s

y
′
1,s

x
′
2,s

y
′
2,s

⎞
⎟⎟⎠, (7)

so that each subset s gets a homography

Hs =

(
m0,s m1,s m2,s

−m1,s m0,s m3,s

0 0 1

)
. (8)

That way, the parameter complexity p is reduced from 8

to 4 which means that only 1,874 subsets are needed for

the case described above. Now, for every subset all feature

positions xi = (xi, yi) selected and tracked by KLT are trans-

formed by Hs to x̃i,s = (x̃i,s, ỹi,s) and the λ-th percentile

vλ,s (with λ = 1− ε) of the squared error distances

r2i,s = ‖xi + di − x̃i,s‖2 (9)

is taken to estimate a subset standard deviation

σ̂s =
1

Φ−1 (0.75)
·
(
1 +

5

n− p

)
· vλ,s. (10)

Thus, every feature correspondency can be classified by its

estimation error related to Hs:

wi,s =

{
1, if |ri,s/σ̂s| ≤ 2.5

0, else
, (11)

where wi,s = 1 classifies a correspondence as inlier. Having

the amount of inliers

Is =

n∑
i=1

wi,s (12)

and their estimation error standard deviation

σ
′
s =

√ ∑
k∈Inliers

(rk,s − μs)2

Is
(13)

with μs as inlier mean error of a set, a rating value

Φs =
Is
σ′
s

(14)

can be defined for every subset. The selection of k = Is
remaining inliers corresponding with the highest rating Φs

should describe a global motion model best and is taken to
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get a final perspective motion model with eight parameters by

solving an overdetermined equation system of the form

A ·

⎛
⎜⎜⎜⎜⎝
m0

m1

...

m6

m7

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

x
′
1

y
′
1

...

x
′
k

y
′
k

⎞
⎟⎟⎟⎟⎟⎠, (15)

with the perspective design matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

...
...

...
...

...
...

...
...

xn yn 1 0 0 0 −xnx
′
n −ynx

′
n

0 0 0 xn yn 1 −xny
′
n −yny

′
n

⎞
⎟⎟⎟⎟⎟⎠ (16)

by calculating the pseudo-inverse of A. The final result is

a precise perspective motion model. Figure 1 illustrates the

process of estimating a global motion model from feature cor-

respondencies.
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Fig. 1. Global motion estimation on feature correspondencies

4. EXPERIMENTAL EVALUATION

Twelve test sequences with varying properties as resolution,

frame rate and existence and size of foreground objects have

been selected for evaluation of the proposed method. Table 1

shows the used sequences. For comparison with the method

discussed in this paper, we used the algorithm proposed in

[4] on motion vector fields created by encoding all sequences

with a GOP structure of IPPP. . . and a QP of 4 with KTA 2.4

reference software. For the method described in this paper we

always selected 400 features with a minimum euclidean dis-

tance of 10 pixels and a feature window size of 7×7. To mea-

sure the motion estimation quality we warped each frame of a

given test sequence onto its successive one with the use of the

estimated parameters. The frame warping is done with bicu-

bic spline interpolation of degree three. Background PSNR

(BPSNR) values between the warped frames and their corre-

spondencies have been calculated using manually segmented

ground truth masks of the background regions. Table 2 shows

BPSNR values for the uncompensated case (no motion com-

pensation), for the method on motion vector fields and the

method described in this paper1. The last column shows the

gain of the feature-based method for each sequence in com-

parison to the motion-vector-based one.

The results show that for almost all resolutions, quality

improvements are possible, irrespective of existing fore-

ground objects. As the camera motion in the Monaco se-

quence is much smaller than quarter-pel, the gain resulting

from the highly precise feature motion estimation is even

about 1.66dB. The rotation in the Blue Sky sequence, be-

ing much faster than sub-pel is estimated exactly by both

approaches (motion-vector-based and feature-based) so that

there is no quality gain achievable. But this result also shows

that the new method does not perform less accurate. A gain

of 0.96dB for the Mountain sequence proves, that even in

video sequences with moving foreground objects the new

feature-based method can outperform the former block-based

one. Figure 2 shows exemplarily BPSNR-curves for the

Monaco and Mountain sequence. For comparison, uncom-

pensated values are shown as well as results for block-based

and feature-based GME. As the motion-vector-based method

can use existing vector fields, while the new one needs to cal-

culate feature correspondencies first, our new method needs

about 69% more runtime in average. Notice, however, that

both methods are extremely fast in comparison to the method

proposed in [5].

Sequence name Size fps Frames

Mountain 352 x 192 25 130

Stefan 352 x 240 30 300

Allstars (small) 352 x 288 25 250

Biathlon 352 x 288 25 200

Monaco 352 x 288 25 150

Race 544 x 336 25 100

Flowervase 832 x 480 30 300

Allstars (big) 704 x 576 25 250

Room 3D 720 x 576 25 60

Schloss 720 x 576 25 120

Penguins 1280 x 720 25 349

Blue Sky 1920 x 1080 25 217

Table 1. Overview of the used test sequences

5. SUMMARY

We presented a new method for pixel-based global motion es-

timation working on features that are selected by their track-

ability and then tracked with sub-pixel accuracy using a local

gradient descent approach as done by the KLT feature tracker.

The outlier rejection process for getting a perspective model

that describes the background transformation of two adjacent

frames has been introduced. The comparison to the block-

based method shows quality improvements up to 1.66dB.

1Estimation error videos and further BPSNR-curves can be found at

http://www.nue.tu-berlin.de/research/featgme
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Sequence uncompensated [dB] block-based1) [dB] feature-based2) [dB] Δ1) to 2) [dB]

Mountain 18.81 37.74 38.70 +0.96
Stefan 17.74 30.39 30.75 +0.36
Allstars (small) 30.71 41.95 42.42 +0.47
Biathlon 24.21 39.05 39.22 +0.17
Monaco 26.03 39.28 40.94 +1.66
Race 20.66 37.09 37.28 +0.19
Flowervase 32.77 36.57 36.65 +0.08
Allstars (big) 29.27 39.70 40.41 +0.71
Room 3D 17.12 35.50 36.27 +0.77
Schloss 21.89 37.65 37.66 +0.01
Penguins 21.82 32.40 32.63 +0.23
Blue Sky 17.67 39.43 39.43 ±0.00

Table 2. This table shows the results in terms of BPSNR-values [dB] for the uncompensated case, the block-based approach

described in [4], the method described in this paper and the difference between these two methods.

 15

 20

 25

 30

 35

 40

 45

 0  10  20  30  40  50  60  70  80  90

B
P

S
N

R
 [d

B
]

Frame

block-based
feature-based

uncompensated

(a) Mountain

 20

 25

 30

 35

 40

 45

 50

 0  20  40  60  80  100  120  140

B
P

S
N

R
 [d

B
]

Frame

block-based
feature-based

uncompensated

(b) Monaco

Fig. 2. BPSNR-values for two selected test sequence comparing the block-based method with the feature-based one
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