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ABSTRACT

A widely used technique to reduce the noise variance of a si-
gnal is a temporal overlapping of several noisy versions of it.
It will be shown that the same idea can be applied for video se-
quences. Several versions of the current frame can be aligned
using motion compensation that adjacent frames represent a
noisy version of the current frame. In a first theoretical calcu-
lation of this concept combining the temporal overlapping of
several noisy versions of the same signal and a rate-distortion
equation, it has been shown that a theoretical bit rate reduc-
tion of 1

2 log2(N) is possible. In this work, the concept will
be advanced to be closer to practice by adding a model for
the motion estimation error. It will be shown that the deri-
ved theoretical equation confirms the practice and models the
behavior of a video encoding environment using parametric
motion compensated temporal filtering very well.

1. INTRODUCTION

Temporal filtering is a widely used method in video proces-
sing techniques such as video coding, video enhancement,
and superresolution. It is well known that noise reduction
using overlapping of a number of noisy versions of the same
signal is very powerful. Due to the fact that consecutive fra-
mes of a video sequence are highly correlated, it is possible
to use this technique to reduce noise in a video sequence. For
that, adjacent frames of the current frame to be filtered can be
taken into account to be multiple versions of the same frame.

Higher-order motion compensation as shown in e.g. [1],
[2] brings improved coding efficiency for certain test se-
quences. The idea of combining these techniques including a
superresolution approach with a common hybrid coding sche-
me has been outlined in [3]. This promising technique also
includes a theoretical model. Here, higher-order motion com-
pensation was applied to improve the prediction efficiency
of a hybrid encoder loop. It has also been shown theoreti-
cally that the use of the proposed technique is reasonable.
Inspired by this work and further theoretical approaches in
image processing, e.g. [4], [5], and [6], the motivation of this
paper is to show a new parametric motion temporal filtering
technique including a fundamental theoretical background. It

has been shown in [7] that the use of higher-order motion pa-
rameters can lead to a significant improvement depending on
the application. Here, a theoretical model is developed to pro-
ve the efficiency of parametric motion temporal filtering for
deblocking. It is shown that, based on some assumptions, ha-
ving this temporal filtering approach inside a coding system,
the quantization noise (blocking artifacts) can be significantly
reduced. For that, the idea of noise reduction using temporal
overlapping is connected with a rate-distortion environment
shown in [8]. Additionally, the parametric motion estimation
error that occurs when the image stack is built is also taken
into account.

The paper is organized as follows. Section II decribes the
derivation of the theoretical model of parametric motion tem-
poral filtering. Section III shows experimental results where
the model is compared with practical results using the coding
environment proposed in [8]. It will be shown that the theore-
tical equation is very close to the real world. The last section
summarizes the paper.

2. DERIVATION OF A THEORETICAL MODEL

It is assumed that a number of distorted versions Y of an ori-
ginal image X are available. We consider the kth pixel va-
lue yk(m, n) of the kth version which is the sum of the ori-
ginal pixel x(m, n) and a value from the white noise signal
nk(m, n):

yk(m, n) = x(m, n) + nk(m, n) (1)

We calculate the mean value using each candidate of pixel
yk(m, n):

y(m, n) =
1
N

N∑

k=1

yk(m, n) = x(m, n) +
1
N

N∑

k=1

nk(m, n)

︸ ︷︷ ︸
r(m,n)

.

(2)
White noise is assumed with the variance σ2

n and the autocor-
relation matrix:
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 (3)

We now show that the variance of the noise is reduced by the
factor N (number of overlapping signals). The mean noise
signal is r(m, n). Its variance can be calculated as:

σ2
r = E[R2(m, n)] =

1
N2

N∑

i=1

σ2
n =

σ2
n

N
(4)

Thus, the variance of the noise has been reduced by the fac-
tor N . We now turn to our deblocking problem in a video.
Assume that it is possible to observe N representations of y,
i.e. corresponding quantized pixels from N frames of a vi-
deo sequence. Averaging these quantized pixels y in temporal
direction reduces the error variance by

E[e2
f ] =

E[e2]
N

, (5)

with N being the number of noisy versions x. This assu-
mes that the versions of e in temporal direction are also not
correlated. Our goal is to see whether it is possible to code
all versions of x along the temporal direction with reduced
bits/sample when afterwards temporal filtering is applied. Be-
fore showing that, we have to consider the generation of a ver-
sion of e in temporal direction. That means we have to align
a number of frames for filtering one reference image. This is
conducted using short-term and long-term motion estimation.
We now find a way to model this. It is still assumed that we
have the 2-dimensional Gaussian distributed memoryless si-
gnal x = xn. We now try to estimate the current sample using
the previous one. This is done with an additive operation, that
is in an optimal estimation:

xn(x, y) = xn−1(x + tx, y + ty), (6)

where t is the optimal estimation parameter. In practice, this
operation does not match exactly due to the way the estimati-
on is calculated, right motion model, interpolation operation
for sub-pixel case, etc. Therefore, an estimation error appears,
which can be written for our theoretical case:

xn−1(x+tx+∆x, x+ty +∆y) = xn(x+∆x, y+∆y), (7)

where ∆x,∆y is the estimation error. Thus, the resulting error
signal is:

en(x, y) = xn(x, y)− xn(x + ∆x, y + ∆y). (8)

The term xn(x+∆x, y +∆y) can be approximated using the
first Taylor expansion:

xn(x + ∆x, y + ∆y) ≈ xn(x) +∇xT
n ·

(
∆x

∆y

)
. (9)

With this, the error signal is shown in (10).

en(x, y) = −∂xn(x, y)
∂x

· ∆x −
∂xn(x, y)

∂y
· ∆y (10)

We can now calculate the error variance using the expec-
ted value

σ2
en = E

[(
− ∂xn(x, y)

∂x
∆x −

∂xn(x, y)
∂y

∆y

)2]
(11)

with the assumption that ∂xn(x,y)
∂x , ∆x, ∂xn(x,y)

∂y , and ∆y are
uncorrelated and statistically independent:

σ2
en

= E[∆2
x] · E

[(
∂xn(x, y)

∂x

)2]
+

E[∆2
y] · E

[(
∂xn(x, y)

∂y

)2]
(12)

Now, we approximate the derivative of xn with the first nu-
merical derivative in both directions:

∂xn(x, y)
∂x

≈ xn(x, y)− xn(x− 1, y)

∂xn(x, y)
∂y

≈ xn(x, y)− xn(x, y − 1), (13)

using this and the assumption E[∆2
x] = E[∆2

y] = E[∆2]
we can plug the approximation in (12) and results in (14),
which is the prediction error variance due to the estimation
of one signal from a previous version. We assume that the
autocorrelation function (ACF ) in x- and y-direction can be
approximated as a first order autoregressive process (AR(1))
with a correlation factor α between zero and one.

σ2
en

= σ2
∆ ·

{
E

[(
∂xn(x, y)

∂x

)2]
+

E

[(
∂xn(x, y)

∂y

)2]}

= σ2
∆ · {σ2

x − 2 E[xn(x, y)xn(x− 1, y)]︸ ︷︷ ︸
ACF (AR(1))=σ2

x·α|1|
1

+

σ2
x + σ2

x − 2 E[xn(x, y)xn(x, y − 1)]︸ ︷︷ ︸
ACF (AR(1))=σ2

x·α|1|
2

+σ2
x}

= σ2
∆σ2

x · (4− 2(α1 + α2)
= 2σ2

∆σ2
x(2− α1 − α2) (14)
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Knowing this, we can derive a rate-distortion equation for
reducing the noise using temporal filtering with the constraint
of the estimation error variance. For our Gaussian distributed
memoryless signal xn, the D-R-function is:

σ2
exq

= 2−2R · σ2
x. (15)

In the aligning process for our temporal filtering, we calculate
short-term parameters for the estimation between consecutive
signals. Every aligned signal which represent a “new” versi-
on of the signal to be filtered is generated by applying long-
term motion parameters according to the reference signal. The
long-term motion parameters are calculated using accumula-
tive multiplication of the short-term parameters. We assume
that the model for the short-term estimation errors between
two consecutive frames derived in (14) can serve for every
estimation step. If these errors are now accumulated because
of building the long-term motion parameters, the overall error
caused by the motion estimation process increases. To model
the long-term motion compensation error, we basically sum
the errors which occur due to short-term motion estimation as
derived in (14). It is highly emphasized that this assumption is
made to simplify the theoretical modeling at this stage, becau-
se calculating the long-term motion parameters and the blen-
ding process to build the filtered version of the current image
is a very sophisticated process. To design a more accurate mo-
del for that process is an issue for further work. However, it
will be shown later that this assumption approximates the re-
al behavior of the video codec using global temporal filtering
very well.

Thus, we consider two error components of our model for
temporal noise reduction. The temporally overlapped quanti-
zation error represented by its variance σ2

eq
and the prediction

error variance due to the motion estimation σ2
em

:

σ2
eq

= 2−2R σ2
x

N
σ2

em
= N · 2σ2

∆σ2
x(2− α1 − α2) (16)

We assume that the final error variance is built by the sum of
the two components shown above. Thus, the D-R-function of
our model for the temporal noise reduction with (16) is:

σ2
etf

= 2−2R σ2
x

N
+ N · 2σ2

∆σ2
x(2− α1 − α2). (17)

Now, it is of interest how possible bit rate savings are carried
out from this theoretical D-R-function. For that, the distortion
values of (15) and (17) are set equal. The bit rate of the general
quantization error shall be R1 and the bit rate using temporal
noise reduction shall be R2. An equation of the bit rate R2

can now be derived as shown in (18).

σ2
exq

!= σ2
etf

2−2R1σ2
x = 2−2R2

σ2
x

N
+ N · 2σ2

∆σ2
x(2− α1 − α2)

2−2R2
1
N

= 2−2R1 −N · 2σ2
∆(2− α1 − α2)

R2 = −1
2

{
ld{2−2R1 −

N2σ2
∆(2− α1 − α2)} + ld(N)

}
(18)

For a meaningful interpretation of (18), limits are calculated
where (18) is valid considering the real coding and filtering
algorithm. First, a lower limit for R1 is derived. The equation
in (18) makes only sense if the term 2−2R1−N2σ2

∆(2−α1−
α2) is greater than zero. This leads to:

0 < 2−2R1 −N2σ2
∆(2− α1 − α2)

2−2R1 > N2σ2
∆(2− α1 − α2)

−2R1 > ld(N2σ2
∆(2− α1 − α2))

R1 > −1
2
ld(N2σ2

∆(2− α1 − α2)) (19)

The next consideration is that the number of frames for tem-
poral filtering N is greater or equal to 1. This means that
ld(N) ! 0. The upper limit of N can be derived from (18).
The upper limit for N and the error variance of the pixel dif-
ference due to motion estimation σ2

∆, respectively:

0 " 2−2R1 −N2σ2
∆(2− α1 − α2)

2−2R1 ! N2σ2
∆(2− α1 − α2)

N " 2−2R1

2σ2
∆(2− α1 − α2)

(20)

σ2
∆ " 2−2R1

2N(2− α1 − α2)
(21)

3. EXPERIMENTAL EVALUATION

We would like to evaluate the theoretical model found in (17)
and (18). For that, We used three test sequences: “Biathlon”
(352×288, 200 frames) taken from a German televison broad-
cast, “Birds” (720 × 576, 110 frames) and, “Desert” (720 ×
400, 240 frames) from BBC documentary “Planet Earth”. We
consider theoretical rate (R) vs. number of frames for filtering
(N) function (18). It is demonstrated how well our theoretical
function models the behavior of the visual quality assessed
video codec presented in [8]. For that, we conducted experi-
ments to draw R-N-curves with the experimental data. Fig. 1
(a) shows the results for (18) with different motion estimation
error variances σ∆ and (b) shows the results for three test se-
quences at one QP. It can be seen that the experimental curves
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Fig. 1. Comparing theoretical and experimental curves of bit rate savings (∆R) vs. number of frames (N) with variable motion
estimation error variance

approximately follow the theoretical curves. The curves ha-
ve different shapes depending on the possible bit rate saving
that can be achieved. As the theoretical function demonstra-
tes, the bit rate savings increase with a decreasing motion esti-
mation error variance. The motion estimation performs very
well with the test sequences “Birds” and “Desert”, but is mo-
re difficult with “Biathlon”. Therefore, less bit rate savings
are possible with “Biathlon”. Thus, we have shown with our
theoretical model that the global motion temporal filter insi-
de a video codec can bring a very good coding performance
regarding bit rate reduction and visual quality enhancement.

4. CONCLUSION

We have shown an approach for theoretical modeling of para-
metric motion temporal filtering. The motivation was to show
how this kind of filtering method can perform in a coding
environment. Therefore, it was assumed that the quantizati-
on noise can be treated as white noise so that temporal over-
lapping of several noisy versions of the same signal can be
applied for noise reduction. This was integrated in a rate-
distortion function. The resulting equation has mapped the
behavior of the filtering approach in a coding environment
very well. It can be concluded that with this theoretical consi-
deration the power of the parametric motion temporal filtering
approach has been proved and it motivates further work e.g.
implementing this idea in a hybrid encoder loop or work on
further video enhancement algorithms.
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