
EFFICIENT REAL-TIME LOCAL OPTICAL FLOW ESTIMATION BY MEANS OF
INTEGRAL PROJECTIONS

Tobias Senst, Volker Eiselein, Michael Pätzold and Thomas Sikora

Technische Universität Berlin
Communication Systems Group

EN 1, Einsteinufer 17, 10587 Berlin, Germany

ABSTRACT

In this paper we present an approach for the efficient com-
putation of optical flow fields in real-time and provide im-
plementation details. Proposing a modification of the popular
Lucas-Kanade energy functional based on integral projections
allows us to speed up the method notably. We show the po-
tential of this method which can compute dense flow fields
of 640x480 pixels at a speed of 4 fps in a GPU implemen-
tation based on the OpenCL framework. Working on sparse
optical flow fields of up to 17,000 points, we reach execution
times of 70 fps. Optical flow methods are used in many differ-
ent areas, the proposed method speeds up current surveillance
algorithms used for scene description and crowd analysis or
Augmented Reality and robot navigation applications.

Index Terms— optical flow, feature tracker, KLT, integral
projection, real-time

1. INTRODUCTION

Computation of optical flow is a common topic in the com-
puter vision community whose applications range from mo-
tion estimation to point tracking. Based on the seminal works
of Lucas-Kanade [1] and Horn-Schunck [2] a diverse range
of optical flow estimation techniques have been developed.

Motion is an important cue in many computer vision
tasks. Applications as robot navigation, Augmented Reality,
visual attention and camera self-calibration require veryfast
detection of interest points (feature points) and the subsequent
search for potential correspondences in real-time. Therefore,
methods with excellent runtime performance exploiting local
optical flow techniques as the popular KLT tracking algo-
rithm [3] in many cases are still applied and can outperform
more accurate but also time consuming feature tracker e.g.
SIFT [4]. Recent work was done to improve the run-time per-
formance by parallelising the algorithm and porting it ontoa
GPU [4, 5, 6, 7]. In the approach of the II-LK method [8] the
run-time performance was enhanced by reducing the com-
putational complexity drastically using integral images and
applying an additional approximation, which results in an
decreased accuracy but is more in reliable applications as

robot navigation that are restricted by limited hardware. In
this paper we present a modification of the Lucas-Kanade
method based on the use of integral projections with a signif-
icantly improved performance by reducing the computational
complexity compared to the standard PLK and increase the
accuracy compared to the II-LK. A parallelized GPU imple-
mentation allows then the computation of large flow fields in
real-time.

The paper is organized as follows: In section 2 we explain
our approach of using integral projections within the Lucas-
Kanade method. In section 3 we show our results, evaluate
the performance compared to recent techniques and section 4
concludes the paper.

2. MODIFYING THE LUCAS-KANADE METHOD BY
INTEGRAL PROJECTIONS

The method we describe combines the Lucas-Kande algo-
rithm with the technique of integral projections which was
applied by [9] for global motion estimation.

The common starting point for optical flow algorithms is
the well known brightness constancy assumption which de-
fines the constancy of the image intensities in the past and the
current image warped according to the optical flow:

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt), (1)

whered = (u, v)T denotes the unknown motion vector of the
vector field.

Lucas and Kanade formulated the brightness constancy
assumption in combination to the assumption that all pixelsin
a regionΩ of the sizewx×wy, where both are odd, are subject
to a constant movement. To compute the displacementd the
energy functional based on the the linearisation and first order
Taylor-approximation of Eq. 1 has to be minimised:

Elocal =
∑

x∈Ω

∑

y∈Ω

(u · Ix + v · Iy + It)
2 (2)

with the spatial derivativesIx, Iy and the temporal derivative
It. The summation of each row and column are separated
for a better readability. We define integral projections where

senst
Schreibmaschinentext
Copyright (c) 2011 IEEE. Personal use of this material is permitted. However, to use this material for any other purposed must be obtained from IEEE by sending an email to pubs-permissions@ieee.org



Px[I] denotes the horizontal andPy[I] denotes the vertical
projection of any dataI, with Px[I], Py[I] : <

2 7→ <1 in a
domainΩ, we obtain:

Px[I] =
∑

x∈Ω

I(x, y) (3)

Py[I] =
∑

y∈Ω

I(x, y) (4)

in relation to Eq. 2. With the purpose of not losing informa-
tion, we derive a similar equation by changing the order of
the projection terms of

∑

x∈Ω and
∑

y∈Ω. Finally, we obtain
the following equivalent system of equations which has to be
minimized:

Elocal =
∑

y∈Ω

Px

[

(u · Ix + v · Iy + It)
2
]

(5)

Elocal =
∑

x∈Ω

Py

[

(u · Ix + v · Iy + It)
2
]

(6)

Let us now assume the use of gray value images of the
range of[0, 255] and spatial derivatives to be approximated
as a discrete difference operator,Ix = I(x − 1, y) − I(x, y)
andIx = I(x, y − 1) − I(x, y). These assumptions allow
for the following conclusions regarding integral projections
of image derivatives within the domainΩ:

Px[Ix]
y0..ywy

=
∑

i∈Ω (I(i− 1, y)− I(i, y))

= I(x0, y)− I(x1, y) + I(x1, y)− I(x2, y) + ...

+ I(xwx−1, y)− I(xwx
, y)

= I(xwx
, y) − I(x0, y) ∈ [0; 255]

(7)
whereas in the other dimension

Py[Ix]
y0..ywx

=
∑

i∈Ω

(I(x, i− 1)− I(x, i)) (8)

cannot be simplified and its co-domain is∈ [−255 ·

N ; 255 · N ]. In an analogical manner, these considerations
hold by changing the directions of the projection and the
gradient calculation respectively.

We thus conclude that using a large regionΩ and images
including sufficient texture in x- and y-direction, which isan
important assumption by Lucas and Kanade, the contributions
of the projection termPx[Iy] andPy[Ix] are in general more
significant thanPx[Ix] andPy[Iy]. In theory, calculating the
sum of an image gradient is equivalent to applying a low-pass
filter followed by a high-pass filter, which will cut off both
the very low and the very high frequencies and thus reduces
the energy of the signal. As an approximation, we can thus
ignore these parts of Eq. 5,6 and setPx[Ix] = 0, Py[Iy] = 0.

Along with this assumption it is now possible to minimise
the equation for each motion component separately.

Elocal =
∑

y∈Ω

Px

[

(v · Iy − It)
2
]

(9)

Elocal =
∑

x∈Ω

Py

[

(u · Ix − It)
2
]

(10)

As shown each component depends from the correspond-
ing projected spatial and temporal derivatives. To get an ac-
curate solution, a pyramidal iterative implementation solving
Eq. 9,10 in a Newton-Raphson fashion as proposed in [10]
is applied. In practice it has been shown that using a learn-
ing rateτ ∈ [0, 1] enhances the robustness of the solution
by avoiding overshooting and thus potential divergence. The
iterative scheme is given by:

uk+1 = uk + τ ·

∑

x∈Ω

Py [Ix · It,k]

∑

x∈Ω

Py [Ix · Ix]
(11)

vk+1 = vk + τ ·

∑

y∈Ω

Px [Iy · It,k]

∑

y∈Ω

Px [Iy · Iy]
(12)

with It,k = I(x, y, t)− I(x+ uk, y + vk, t+ 1) andk as
the number of iterations. The iteration is done until reaching
convergence or a maximum number of iterations.

Observe that the projected spatial derivativesPy[Ix] and
Px[Iy] are computed only once at the beginning of the itera-
tion scheme. This is a higher effort than using integral images
(see [8]) but avoids the second Taylor approximation. The so-
lution shows that by the proposed approximation it is theoret-
ically possible to reduce the computational effort forn feature
points,k iterations and a quadratic regionΩ of the sizew×w

from quadraticO(k · n · w2) to linearO(k · n · w).
Practical aspects of this approach, e.g. region sizes and

other parameters will be discussed in the following sections.

3. EVALUATION

In this section we present the results of the implementa-
tions of our proposed method. In a first experiment we test
our CPU-implementation with various parameter settings
concerning accuracy and execution time in comparison to
the state-of-the-art pyramidal Lucas-Kanade implementation
in Intel’s OpenCV library1. Evaluation was done on the
Middlebury benchmark sequences [11] without using color
information. All tests were conducted on a PC with an 3.00
GHz Intel Core2Duo CPU using C/C++ implementation.
The evaluation is based on two criteria: the common perfor-
mance measures for dense flow fields as the average angular
error (AAE) and the average endpoint error (AEE)[11] and

1available at http://sourceforge.net/projects/opencvlibrary



(a) Varying Window Size

(b) Varying Number of maximal Iterations

Fig. 1. Comparing tracking performances plot (Grove2) by
(a) varing region sizes with 12 maximal iterations and (b)
varying number of maximal iterations with fixed window size
of 15. The convergence of the algorithms is reached in very
few iterations (τ = 0.6).

the tracking efficiencyη, which was introduced by Singh
et al. [12] and also used in [7]. This measure is defined as
the quotient of the number of successfully tracked features
and the total number of features initialized. Both criteriaare
combined into a plot called tracking performance, see Fig. 1
which is a measurement to describe the ability to track fea-
tures including their tracking errors (AAE, AEE). Combining
both criteria is important as the Lucas Kanade feature tracker
has the possibility to detect lost features, and also outliers are
rejected differently by each method.

Varying tracking efficiency is produced by comparing the
calculated motion vectors from imageI(t) → I(t + 1) and
reverseI(t + 1) → I(t). The vector will be rejected if the
residual motion

∥

∥dI(t)→I(t+1) − dI(t+1)→I(t)

∥

∥ is bigger than
a threshold.

To determine a parameter set, the numbers of maximal
iterations, region sizes and learning rate are varied and com-
pared in Fig. 1 and Fig. 2. The result shows that the conver-
gence can be achieved by a small number of iterations. In
further experiments a maximal number of 12 iterations and a
region size of 15 with a learning rateτ = 0.6 will be used.

As illustrated in Fig. 2, with a reduced theoretical com-
plexity ofO(k ·n ·w) compared to theO(k ·n ·w2) by PLK,
theAEE of the proposed method is slightly higher than in the
original Lucas-Kanade algorithm which is due to the approx-
imation error of using integral projections but obviously has
a higher accuracy than the II-LK [8], which computational
complexity is constantO(k · n) due to the usage of integral
images.

In practice the theoretical computational effort could be

Fig. 2. Comparing execution time and AEE by the CPU im-
plementation of the pyramidal Lucas-Kanade (PLK) and the
integral projected modified PLK (window size 15). The con-
vergence of the algorithms is reached in very few iterations
(left). TheAEE (right) shows that the modified PLK is less
accurate than the PLK but more accurate than the II-LK.

varying dramatically i.e. the convergence is reached before
the maximal numbers of iterations or not. From Fig. 2 left
the convergence behaviour can be derived. But to display
the overall computational effort the PLK, and modified PLK
are compared in Fig. 3 bottom, the results, obtained for
the execution time by different region sizes, emphasize that
the computational complexity is practically reduced from
the quadratic complexity to the linear complexity. Finally,
we compared the execution time of our GPU implemen-
tation using OpenCL with the pyramidal Lucas-Kanade-
implementation of Marzat [6]2, which was implemented us-
ing the CUDA interface to show the ability for parallelisation
of our method. We performed this evaluation on a NVIDIA
GTX275 graphic device. Figure 3 right illustrates the execu-
tion time of the two implementations. As already mentioned
during the evaluation of the CPU-implementation, these re-
sults show the reduction of the computational complexity.

This yields a huge speed-up of up to 248ms per frame
compared to 672ms of the Cuda implementation. The top
diagram of Fig. 3 shows the execution time of the modified
PLK for a smaller number of feature points. The scalability
of our implementation makes it possible to decrease signifi-
cantly the execution time if the number of features to track
is reduced. That can be useful e.g. in surveillance scenarios,
Structure from Motion or Augmented Reality. By computing
the motion vectors for every sixth pixel of the given video se-
quence (640x480 pixels), the execution time of our algorithm
decreases from 248ms (applying to 276624 feature points) to
14 ms (applying to 17289 feature points). Due to the constant
computational complexity of the not optimised preprocessing
kernels, the execution time can not fall below 4ms per frame.

4. CONCLUSION

In this paper we present an approach to speed up the motion
estimation of sparse and dense sets of features. The classi-
cal Lucas-Kanade algorithm is modified by minimizing the

2available at http://www.nvidia.com/object/cudahome.html#state=home



Fig. 3. Comparing the execution time of CPU (bottom left)
and the GPU (bottom right) implementation of the pyrami-
dal Lucas-Kanade (PLK) and the integral projected modified
PLK. Varying the number of motion vectors (emphasised by
arrows) for the modified PLK decreases significantly the exe-
cution time (top).

brightness constancy assumption energy functional by means
of integral projections. With an OpenCL-based implementa-
tion, we achieved a performance of 248 ms per frame on a
NVIDIA GTX 275 GPU for a640 × 480 dense flow field.
Sparse flow fields of about 17,000 points can be computed
in an execution time of up to 14 ms. This shows that the
trade-off between speed-up and accuracy is a good compro-
mise, especially in real-time scenarios. With respect to the
runtime, our method is much faster than state-of-the-art GPU
implementations as [6]. Therefore we propose this algorithm
for surveillance applications, which need motion vectors or
feature trajectories for e.g. crowd description or crowd be-
haviour analysis and can be speeded up this way or such as
Augmented Reality and robot navigation which are restricted
by limited hardware. Furthermore, we propose this algorithm
as an adequate solution for algorithms which process high-
definition video content.

5. REFERENCES

[1] Bruce D. Lucas and Takeo Kanade, “An iterative im-
age registration technique with an application to stereo
vision,” 1981, pp. 674–679.

[2] Berthold K. P.Horn and Brian. G. Schunck, “Determin-
ing optical flow,”Artifical Intelligence, vol. 17, pp. 185–
203, 1981.

[3] C. Tomasi and T.Kanade, “Detection and tracking
of point features,” Technical report CMU-CS-91-132,
CMU, 1991.

[4] Marc Pollefeys Sudipta N. Sinha, Jan-Michael Frahm
and Yakup Genc, “Gpu-based video feature tracking and
matching,” Technical report 06-012, UNC Chapel Hill,
2006.

[5] C. Zach, D. Gallup, and J.M. Frahm, “Fast gain-adaptive
klt tracking on the gpu,” inVisual Computer Vision on
GPUs workshop (CVGPU 08), 2008, pp. 1–7.

[6] J. Marzat, Y. Dumortier, and A. Ducrot, “Real-time
dense and accurate parallel optical flow using cuda,”
in Proceedings of the 17th International Conference in
Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG), 2009, pp. 105–111.

[7] Tobias Senst, Volker Eiselein, Rubén Heras Evangelio,
and Thomas Sikora, “Robust modified L2 local op-
tical flow estimation and feature tracking,” inIEEE
Workshop on Motion and Video Computing (WMVC 11),
2011, pp. 685–690.

[8] Tobias Senst, Volker Eiselein, and Thomas Sikora, “II-
LK a real-time implementation for sparse optical flow,”
in International Conference on Image Analysis and
Recognition (ICIAR 10), 2010, pp. 240–249.

[9] A. J. Crawford, H. Denman, F. Kelly, F. Piti, and A. C.
Kokaram, “Gradient based dominant motion estimation
with integral projections for real time video stabilisa-
tion,” in IEEE International Conference on Image Pro-
cessing, 2004, pp. 3371–3374.

[10] Jean-Yves Bouguet, “Pyramidal implementation of the
lucas kanade feature tracker,” Technical report, Intel
Corporation Microprocessor Research Lab, 2000.

[11] J.P. Lewis Stefan Roth Michael J. Black Simon Baker,
Daniel Scharstein and Richard Szeliski, “A database and
evaluation methodology for optical flow,” Technical re-
port MSR-TR-2009-179, Microsoft Research, 2009.

[12] Meghna Singh, Mrinal K. Mandal, and Anup Basu,
“Gaussian and laplacian of gaussian weighting functions
for robust feature based tracking,”Pattern Recognition
Letters, vol. 26, no. 13, pp. 1995–2005, 2005.




