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Abstract—The presented work is motivated by the problem of
local motion estimation via robust regression with linear models.
In order to increase the robustness of the motion estimates we
propose a novel Robust Local Optical Flow approach based
on a modified Hampel estimator. We show the deficiencies of
the least squares estimator used by the standard KLT tracker
when the assumptions made by Lucas/Kanade are violated. We
propose a strategy to adapt the window sizes to cope with the
Generalized Aperture Problem. Finally we evaluate our method
on the Middlebury and MIT dataset and show that the algo-
rithm provides excellent feature tracking performance with only
slightly increased computational complexity compared to KLT.
To facilitate further development the presented algorithm can be
downloaded from http://www.nue.tu-berlin.de/menue/forschung/
projekte/rlof/.

Index Terms—KLT, Robust Estimation, Feature Tracking,
Hampel, Long-Term Trajectories, Optical Flow

I. I NTRODUCTION

T HE computation of 2D-image velocities, or optical flow,
is a common topic in computer vision. Our challenge

is to estimate the scene or object motion as precisely and
computationally efficient as possible. Common optical flow
techniques exploit two constraints:data conservationand
spatial coherence. Data conservation is derived from the
observation that the observed objects generally persist intime.
Thus the intensity of a small region in two consecutive images
remains constant, although its position is changing. This leads
to the mathematical formulation of theintensity constancy
assumption:

I(x, y, t) = I(x+ uδt, y + vδt, t+ δt), (1)

with I(x, y, t) as the image intensity of a grayscaled image,
d = (u, v)T denoting the displacement of a point andδt as
a small time difference at a positionx = (x, y). Different
approaches to solve this equation have been described widely
in the literature [1]. The most successful methods to compute
d use a linearisation of Eq. 1 performed by a first order Taylor-
approximation and are therefore gradient-based. This leads to
an underdetermined linear system. To solve this system, two
kinds of spatial coherence conditions have been introduced
and established: the techniques ofglobal and local gradient-
based approach. By introducing an additional global constraint
Horn and Schunck [2] apply a soft spatial coherence forcing
the partial derivatives of neighbouring motion vectors to be
minimal. A strong spatial coherence was introduced by Lucas
and Kanade [3] that is categorised as local constraint expecting
the motion in a small region to be constant.

These assumptions are simplifications and hence may be
violated in practice. For example motion boundaries violate
the common assumption that the optical flow varies smoothly.

As described by Black and Anandan [4] the violations re-
sult in gross measurement errors which are referred to as
outliers. Since Horn/Schunck and Lucas/Kanade penalize the
minimization in a quadratic way the model does not handle
outliers robustly. Black and Anandan [5] proposed a robust
estimation framework exploiting the Lorentzian robust norm.

Most of the state-of-the-art global optical flow methods
are using robust estimation frameworks. Common norms are
the modified L1, which is successfully used in different
solutions, e.g. by Broxet al. [6] or the Huber-L1 norm
used by Werlbergeret al. [7]. An additional benefit can be
achieved by combining this with more sophisticated Total-
Variation techniques as in e.g. Papenberget al. [8] and Zach
et al. [9]. Generally global optical flow methods achieve a
superior accuracy compared to local optical flow methods.
Sand and Teller [10] proposed the Particle Video framework
to compute a dense set of long term trajectories from dense
optical flow, which is rather slow. In [11] a large displacement
optical flow as introduced in [12] is used to create dense point
trajectories with a high performance.

Yet, applications as robot navigation, augmented reality,
visual attention and camera self-calibration require veryfast
detection of interest points and the subsequent search for
potential correspondences in real-time. Methods with excellent
runtime performance exploiting local optical flow techniques,
as the popular KLT tracking algorithm [13] are still ap-
plied in many cases. Comparitive studies indicate that the
Lucas/Kanade algorithms provide accurate results [1] while
being significantly more efficient [14] than other optical flow
methods.

Research of local methods is often motivated by improving
the runtime performance. E.g. Senstet al. [15] propose integral
images to decrease the computational complexity per interest
point. Sinha et al. [16], Zach et al. [17] and Fassoldet
al. [18] improve the runtime performance by parallelising
the algorithm and porting it onto a GPU. While in many
global optical flow methods robust estimation techniques are
established, most local methods are currently based on least-
square optimisation. Gain adaptive modifications were pro-
posed by Zachet al. [17] and Kharbatet al. [19]. Kim et
al. [20] propose an approach robust to varying illumination
using a least-median of squares method which is robust but
increases the runtime drastically. Robust motion estimation for
tracking has also been investigated in [21] as an application of
[22]. Bakeret al. [23] has detailed faced up to Lucas/Kanade
regarding to the image alignment problem and a higher ordered
parametrized warping model.

The aim of this paper is to introduce an efficient and
robust local gradient-based feature tracking system that was
earlier motivated and proposed in [24]. In this paper we



3

evaluate shortcomings of the established KLT method. Based
on empirical findings we establish a novel robust local optical
flow algorithm based on a modified Hampel estimator. We
show that this algorithm provides excellent feature tracking
performance with only slightly increased computational com-
plexity compared to KLT.

The remainder of this paper is organized as follows: Sec-
tion II describes the Lucas/Kanade approach analogous to the
regression of a linear model. It will be shown that this least-
squares estimate behaves badly when assumptions are violated.
In Section III and Section IV we introduce our feature tracker
based on a robust estimation framework and in Section V we
evaluate our results regarding the MIT database [25].

II. L UCAS/KANADE IN A STATISTICAL CONTEXT

In this section we want to focus on the Lucas/Kanade
algorithm viewed in a statistical context.

The general gradient-based local optical flow constraint is
formulated as follows:

Elocal =
∑

Ω

w(x) · ρ(∇I(x)T · d+ It(x),σ) (2)

To find a displacementd, the residual error Elocal is min-
imised for a small image regionx ∈ Ω, with the spatial
derivatives∇I(x) = (Ix(x, t), Iy(x, t))

T and the temporal
derivative It(x) = I(x, t) − I(x, t + 1), w(x) a weighting
function and a normρ, with its scale parametersσ and
x = (x, y) image pixel postions.

Consider a linear model and its residual:

ǫi = ýi − x́i0θ0 − . . .− x́ijθj (3)

for the ith of n observations(x́i0, . . . , x́ij, ýi). If ǫi are
independent and normally distributed, Gauss proved that the
optimal fit θ̂ of parametersθ = (θ0, . . . , θj) can be
estimated with the least sum of squares

min
θ

n−1
∑

i=0

ǫ2i . (4)

The least-squares estimator relies on a very efficient computa-
tional complexity. The optimal parameterθ̂, (4) can be directly
computed by an explicit formulation. However, this estimator
is very sensitive to outliers [26], [27].

A. Lucas/Kanade Locally Constant Flow

The Lucas/Kanade method is given by the gradient-based
formulation:

min
d

∑

Ω

(

∇I(x)T · d + It(x)
)2

(5)

To find a displacementd, the sum of least-squares is min-
imised for a small image regionΩ. In the statistical context a
regression for a linear modeĺy− x́T · θ with the parameters
θ = d is done using the observations(x́0, x́1, ý) =
(Ix, Iy, It) of the regionΩ.

1) Linearisation Problem: The original Lucas/Kanade
method [3] is restricted by the first order Taylor-
approximation. The assumption of a linear relation between
the gradients∇I and the motion is only accurate for small
motions. To cope with small linearisation errors, Bouguet [28]
proposes an iterative solution in a Newton-Raphson fashion.
d is iteratively solved for increments to the displacement∆d:

∆di = G−1 ·

[

∑

Ω

∇I(x) · Ii−1
t (x)

]

(6)

whereG denotes the Hessian and the resulting displacement
is updated:

di ← di−1 + ∆di (7)

and the second frame being updated at each iterationi so that
Ii−1
t (x) = I(x, t) − I(x + di−1, t + 1). The iterative

solution is initialised withd = (0, 0)T . In the literature (6)
has also been described by [23] as the inverse compositional
algorithm for translational warps. To cope with motion larger
than a single pixel, a coarse-to-fine strategy is employed in
which pyramids of spatially filtered and sub-sampled images
are created.

2) Aperture Problem:Eq. (6) has a limitation, which is
commonly referred to as the aperture problem. There exists
only a solution ofd if G is not singular. This implies the
existence of gradients inx and y direction in the observed
regionΩ. In consequence the Lucas/Kanade algorithm could
not be applied on homogeneous image content. To overcome
this problem a large regionΩ is needed to increase the
probability that the region contains edges.

3) Generalized Aperture Problem:While a large region is
needed to constrain the solution and provide insensitivityto
noise, it also increases the risk of violating the local constancy
assumption, whereby a region should be described by only one
motion. Contrarily, a small region decreases the probability
that a region contains discriminative edges. That dilemma is
referred to as Generalized Aperture Problem [29].

B. Observation distributions

As discussed in section II-A the assumptions underlying
the Lucas/Kanade algorithm can be violated by homogeneous
regions, motion boundaries, the appearance and disappearance
of pixels e.g. by occlusion and changes of illumination.
This section studies the characteristics and distributionof the
observed dataIx,Iy andIt to motivate the robust framework
proposed in section IV. It should not be seen as a complete
investigation but illustrates potential problems of the standard
Lucas/Kanade method. Similar experiments for settings of
different motion were already conducted by Black and Anan-
dan [5]. By the use of two different synthetic moving patterns
they show that a robust estimation could suppress the non-
dominant motion efficiently in theory. To apply the experi-
ments in a more realistic scene, the ’RubberWhale’ sequence
of the Middlebury dataset [30] is used. The Middlebury dataset
includes synthetic and realistic pairs of consecutively captured
images and provides the optical flow as ground truth for each
pair. To show the distribution of the observed data, two types
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Fig. 1. Distribution of the residual errorǫ (bottom right) and the data of the spatial and temporal derivatives (bottom left) fulfilling the Lucas/Kanade
assumptions (a). The data scatter plot includes the ground truth motion as plane. (b) shows different motions where the motion of the region center is
illustrated as grey plane and the motion of the bottom right region border as transparent plane. (c) shows a setting with changing illuminations affected by
shadows and (d) the appearing of occluded pixels by different motions. The illustration at the top shows the derivatives of the region (left) and an overview
of the region position containing a magnification of the relevant area and a magnification of the color-coded ground-truth.

of plots are used. At first the distribution of the residual (3)
is displayed, see Fig. 1 (bottom left). To get a more detailed
view, the distribution of the observed data is displayed with
a scatter plot for each region, see Fig. 1 (bottom right). The
used region size (17×17) corresponds to a common size for
the Lucas/Kanade algorithm. Additionally the spatial gradients
Ix, Iy and different temporal pixel valuesI1, I2 contained by
the region are shown at the top left while the coarse position
of the region can be seen at the top right. The picture contains
a magnification of the relevant area and a magnification of the
color-coded ground truth, see [30].

The first test is shown by Fig. 1(a) where the data is captured
at position(17, 213) and the region fulfils the Lucas/Kanade
assumption. It includes a single motion, constant illuminations

and spatial gradients in x and y direction prevent the gradient
matrixG from singularity. The distribution of the residual and
data is near to be normally distributed. The second test shown
in Fig. 1(b) is captured at the position(33, 64) in which
the region contains two different motions. The plane of the
second motion is displayed with transparent faces. Obviously
the distribution of the residual and observed data does not
follow a Gaussian distribution.

A test of changing illumination is shown in Fig. 1(c),
captured at the position(50, 374). The different illumination
is affected by the moving shadow of the red wheel. Obviously
the distribution of the residual and data is biased and not
normally distributed. The last test at Fig. 1(d) plots a sample
of a region that includes an appearing texture. It is captured
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at position(386, 312). In contrast to experiment (b) the data
includes outliers, which are not affected and do not belong
to one of the two motions. This results in an asymmetric and
non-Gaussian distribution.

Most of the problems in realistic scenes occur at motion
boundaries. The violation of the local constancy assumption
mostly coincides with the violation of the intensity constancy
assumption by occlusion. In relation to the KLT-Tracker [13]
this becomes an important aspect. To avoid the aperture
problem, this often used tracker performs a feature selection
algorithm (e.g. Good Features To Track [31]) to detect corner
points with high edges in both directions and thus a high
minimal eigenvalue ofG. In practice, these edges lie in all
likelihood at motion boundaries. This gives the motivationto
use a more robust estimator than the least-squares estimator.

III. ROBUST ESTIMATOR WITH PIECEWISEL INEAR

INFLUENCE FUNCTIONS

Huber [32] formed the first basis for a theory of robust
estimation and introduced a class of estimator, calledM-
estimator:

min
θ

n−1
∑

i=0

ρ(ǫi, σ), (8)

whereρ is an error norm, with its scale parametersσ, which
may or may not be present. The M-estimator is a generalisation
of the well-known maximum likelihood estimator without
assuming thatρ is of the form−logf for any probability
density f . The robustness of the estimator depends on its
error norm. An approach based on the influence function was
introduced by Hampel [33]. The influence functionψ(y, σ)
as the derivative of the estimatorρ(y, σ) characterizes the
bias that a particular measurement has on the solution. The
estimation ofθ can be given by the influence function:

n−1
∑

i=0

ψ(ǫi, σ) ·
∂ǫi

∂θ
= 0 (9)

Figure 2 shows the drawback of the least-squares solution:
Outliers are assigned a too high weight by the quadratic error
norm ρ = y2. More robust norms are theL1 norm [8],
[9], [32] and Huber’s minmax norm [7], [34] because their
influence functions are limited. Both are equivalent for large
values but for normally distributed data theL1 norm produces
estimates with higher variance than the optimal quadratic
L2 norm [34], [35]. In contrast, Huber’s minmax norm is
designed to be quadratic for small values, which makes it
applicable for Newton.

A. Redescending Influence Function

To increase the robustness the influence of extremely dis-
cordant observations should be reduced to zero. Soψ should
be designed to vanish for large values. This was a reason
to develop redescending M-estimators which Huber described
in [35]. An advantage of redescending M-estimators is that

ρ(y) ψ(y)

(a) Quadratic
ρ(y) ψ(y)

(b) Huber
ρ(y) ψ(y)

(d) shrinked Hampel

Fig. 2. Common error normsρ with piecewise linear influence functionsψ.

they have very low breakdown points [33]. Black and Anan-
dan [5] proposed an implementation for the optical flow using
the Lorentzian norm

ψ(ǫi, σ) =
2ǫi

2σ2 + ǫ2i
(10)

to improve the behavior of motion computation at motion
boundaries. Odobez and Bouthemy [22] proposed a redescend-
ing M-estimator implementation based on Tukey’s biweight
norm [36]:

ψ(ǫi, σ) =

{

ǫi
(

σ2 − ǫ2i
)2

, |ǫi| < σ

0 , else
(11)

The M-estimator problems using the robust norms (11) and
(10) cannot be solved analytically, which is a drawback with
regard to computational complexity. The solution can instead
be found using the iteratively reweighted least squares method
by transforming the M-estimation problem into an equivalent
weighted least squares problem [22]:

n−1
∑

i=0

ρ(ǫi, σ) =
1

2

n−1
∑

i=0

wi · ǫ
2
i , (12)

where the weight at each observationxi is given by:

wi =
ψ(ǫi)

ǫi
. (13)

Another alternative to the M-estimator is the least median
of squares estimator (LMedS), advantages of which lie in
its theoretical high robustness. But as Odobez and Bouthemy
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(a) not violated (b) motion boundaries

Fig. 3. Error surfaces of the residual error sum obtained by varying(u, v) with the error functions shown in Fig. 2 in the scenario of Fig. 1. The ground truth
motion of (a) isd(17, 213) = (1.36,−0.01) and the center motion of (b) isd(33, 64) = (0.09, 0.15) including a second motion at a neighbouring
pixel d(41, 70) = (0.91,−0.08). Ideally, the minima in the plots should be at the ground truth motion and smooth surfaces should simplify the gradient
descent. The ground truth of the center motion are shown as a black dot and the corresponding second motion as a red circle. The blue lines denote small
values while the red lines denote big values.

(c) changing illuminations (d) appearing pixels

Fig. 4. Error surfaces of the residual error sum obtained by varying (u, v) with the error functions shown in Fig. 2 in the scenario of Fig. 1. The
ground truth motion of (c) isd(50, 374) = (1.06, 0.02) and the center motion of (d) isd(386, 312) = (0.96,−0.02) including a second motion
d(378, 312) = (−1.94,−0.76) . Ideally, the minima in the plots should be at the ground truth motion and smooth surfaces should simplify the gradient
descent. The ground truth of the center motion are shown as a black dot and the corresponding second motion as a red circle. The blue lines denote small
values while the red lines denote big values.

stated, the computational cost of LMedS is very high and is
increasing rapidly with the amount of data.

A primary aim of this paper is to keep the computational
effort as low as possible. We therefore want to focus on
estimator classes with an influence function composed of
linear functions. Figure 2 shows common error norms based
on composed quadratic functions. We base our approach on
the Hampel estimator but reduce the number of its parameters
by shrinking the high and low flat segment to:

ρ(ǫi, σ) =











ǫ2i , |ǫi| ≤ σ1

σ1σ2 , |ǫi| ≥ σ2

σ1(|ǫi|−σ2)
2

σ1−σ2
+ σ1σ2 , else

(14)

with the influence function:

ψ(ǫi, σ) =











2ǫi , |ǫi| ≤ σ1

0 , |ǫi| ≥ σ2
σ1(ǫi−sign(ǫi)·σ2)

0.5(σ1−σ2)
, else

(15)

Several algorithms were investigated by Dutter [37] includ-
ing Newton’s method which we want to use to solve (9).
Newton’s method has the remarkable property that it reaches
the theoretically exact solution in one single step, if the start
value is close to the solution and a (composed) quadratic error
norm is used [35]. A comparative study of these redescending
M-estimators is given by Shevlyakovet.al [38]. The Table I
shows the evaluation of dense optical flow from different M-
estimator for images in the Middlebury dataset. The reference
KLT method based on the quadratic norm is compared to
the M-estimator implementations regarding [22], available at
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Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus
AEE R0.5 AEE R0.5 AEE R0.5 runtime AEE R0.5 AEE R0.5 AEE R0.5 AEE R0.5 AEE R0.5

KLT 1.24 0.14 2.50 0.15 1.75 0.36 76 (sec) 2.13 0.24 1.76 0.15 1.83 0.21 2.30 0.25 0.96 0.16
RLOF* 0.93 0.14 0.30 0.10 1.04 0.29 75 (sec) 1.07 0.22 0.32 0.13 1.27 0.20 1.31 0.24 0.86 0.15
RLOF# 2.69 0.16 12.78 0.26 6.33 0.39 72 (sec) 0.79 0.30 0.39 0.15 10.36 0.30 9.12 0.37 0.93 0.23
RLOF 0.20 0.13 0.23 0.09 0.78 0.26 73 (sec) 0.35 0.20 0.25 0.11 0.80 0.17 0.85 0.23 0.48 0.16

TALWAR 0.24 0.14 0.27 0.09 1.27 0.28 839 (sec) 0.50 0.23 0.32 0.13 5.90 0.41 4.81 0.40 1.33 0.27
TUKEY 0.24 0.14 0.27 0.09 1.27 0.28 789 (sec) 0.50 0.24 0.32 0.13 5.89 0.41 4.84 0.40 1.31 0.27

CAUCHY 0.24 0.14 0.28 0.10 1.22 0.29 811 (sec) 0.48 0.23 0.32 0.14 5.75 0.39 4.80 0.40 1.29 0.26
WELSH 0.24 0.14 0.27 0.09 1.24 0.28 819 (sec) 0.49 0.23 0.32 0.13 5.82 0.40 4.85 0.40 1.28 0.27

TABLE I
AVERAGE ENDPOINT ERROR (AEE) AND THE R0.5ERROR FORM IDDLEBURY DATASET. THE RLOF* (RLOF WITHOUT ADAPTIVE REGION SIZE, SEE

SECTION IV) SHOWS SIMILAR ACCURACY COMPARED TO THETALWAR , TUKEY, CAUCHY AND WELSH ROBUST NORMS[22] BUT A RELATIVELY SHORT

RUNTIME. RLOF#DENOTES THERLOF WITHOUT USING THE MODIFIED ESTIMATOR. R0.5DENOTES THE RATIO OF PIXELS THAT HAVE AN ENDPOINT

ERROR ABOVE0.5 AND ILLUSTRATES THE OUTLIER RESULTING FROM EACH METHOD.

http://www.irisa.fr/vista/Motion2D/about.html, for the Talwar,
Tukey, Cauchy, Welsh norm and to the RLOF. RLOF is shown
in three variants: (a) as described in Section IV, (b) with the
shrinked Hampel norm and having a fixed region size (RLOF*)
and (c) with quadratic norm and adapted region size (RLOF#).
With a relatively short runtime the accuracy of the RLOF* is
comparable to the other robust norms. Further improvement
is reached by adapting the region size of the RLOF*. The
runtime was computed at the ’Grove3’640× 480 sequence
by CPU specification regarding Section V. All methods use
default parameters and a region size of17× 17.

B. Experiments with composed quadratic error norms

In this subsection we want to study the effect of the different
norms (see Fig. 2) to the Lucas/Kanade method with regard to
exemplary data distributions shown in Fig. 1. Figure 3 and 4
show error surfaces of the observations rendered for a region of
size17×17. The error surfaces display the sum of the residual
error ǫi(u, v) weighted with theL2, truncatedL2, Huber or
shrinked Hampel error function while varying(u, v). Ground
truth motion is taken from the dataset and used as solution
information for the center pixel of the region.

To validate the normally distributed data, the experiment
with scenario (a) from Fig. 1 is shown in Fig. 3(a). The minima
of all error surfaces are near the expected ground truth value.

Fig. 4(c,d) show cases of appearing pixels, in (c) the
appearance of the shadow at the right region side and in
(d) uncovered pixels, both violating the intensity constancy
assumption.

Minima of the Huber norm are closer to the ground
truth than the minimum of the least-squares norm. However
redescending influence respectively bounded influence gives
an additional improvement of the behavior concerning gross
outliers. As stated by Hampel [33], non-monotone influence
functions should be used with caution. In general they should
also not descend too steeply. Figure 4(d) shows that the
truncatedL2 norm produces a more non-convex error surface
with local minima that could corrupt the minimisation of (8).

While the result of Fig. 4(d) corresponds to the multiple
motion experiments of Black and Anandan, Fig. 3(b) shows
different characteristics. The minimum is nearer to the second
motion of the region border than to the motion of the region
center, while a second minimum is not visible. This behaviour
can be observed at motion boundaries where at least one object
is homogeneous. The data at homogeneous areas has no or
only a small impact on the result of the estimates of the

linear Lucas/Kanade model because the derivative∂ǫi/∂θ
at homogeneous regions is zero and shrinks its influence.
In consequence the improvement of distinguishing different
motions in a region by robust estimation depends on the ratio
of the textures introduced by each object.

IV. ROBUST LOCAL OPTICAL FLOW

The outcome of our experiments leads us to propose a
variation of the Lucas/Kanade method using the shrinked
Hampel norm (14): the Robust Local Optical Flow (RLOF)
method. The inverse compositional RLOF residual error is
formulated as:

ERLOF =
∑

Ω1⊂Ω

ǫ2 +
∑

Ω3⊂Ω

σ1σ2

+
∑

Ω2⊂Ω

(

σ1

σ1 − σ2

(|ǫ| − σ2)
2
+ σ1σ2

)

(16)

with

ǫ = ∇I(x)T · d + It(x) (17)

andΩ1 as the subset of data inΩ fulfilling |ǫi| ≤ σ1, Ω2

denoting the subset fulfillingσ1 < |ǫi| < σ2 and Ω3 for
which holds|ǫi| ≥ σ2. As stated in Section III-A, (7) can be
solved:

∆di = G−1
RLOF ·

[

∑

Ω1⊂Ω∇I(x) · I
i−1
t (x)

+
∑

Ω2⊂Ω
σ1

σ1−σ2
· ∇I(x)

·
(

Ii−1
t (x)− sign(Ii−1

t (x)) · σ2

)]

(18)

whereGRLOF is the modified Hessian matrix

GRLOF =
∑

Ω1⊂Ω

∇I(x) · ∇I(x)T

+
∑

Ω2⊂Ω

σ1

σ1 − σ2

∇I(x) · ∇I(x)T . (19)

As stated in [35], it is important that the influence function
ψ of the norm does not descend too steeply as long as the
value ofψ is still high. We incorporate this by using theL2

norm as a monotoneψ for the first iteration. This can easily
be done by settingσ1 =∞ andσ2 =∞ For the following
iterations we append cycles with the non-monotoneψ, since
the corresponding shrinked Hampel norm is non-convex and
the determination of the minimum may be trapped in local
minima far away from the true minimum.
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(a) not violated (b) motion boundaries

(c) changing illuminations (d) appearing pixels

Fig. 5. Example of the RLOF and KLT algorithm with different region sizes converging at the four case studies, Section II-B. The resulting motion(u, v) is
plotted against the iteration number. The ground truth is shown as black dash line, and termination criteria are set with 20maximal iterations and a minimal
change of∆d by 0.001.

A. Generalised Aperture Problem

As shown in Fig. 4(c,d) and by the experiments done
by [29] redescending norms are able to cope with perturbations
affecting the local constancy and brightness constancy assump-
tion. An essential requirement therefore is that the observed
underlying moving object owns the dominant textures in the
observed domain. For example this is not fulfilled in Fig. 3(b).
The motion boundaries example contains two moving objects:
the wooden fence in the foreground containing the dominant
textures and the background. While the centre of the observed
region lies on the background, we are interested to compute
its motion. The observations of the backgroundxij (which
correspond to its spatial and temporal derivatives) are less
correlated than the observations of the foreground fence. Thus
the estimation of the parameter setθ is determined by the
fence motion, while the background motion is treated as
outlier. This example shows that the observation done in
Fig 4(c,d) and [29] cannot always be valid. To cope at least
with the violation of the local constancy assumption, the
observed region has to be as small as possible with regard to
the generalized aperture problem to increase the probability
to contain no motion boundary. An additional reason to set
the observed regionΩ as small as possible is caused by the
computational effort.

Therefore we propose a strategy to adapt the region size
depending on the residual errorERLOF and the contained
texture. At firstd is computed for a few number of iterations
il applying a large regionΩlarge. This results in an overall
coarse solution, containing most likely all important texture.
To achieve a better performance at motion boundaries the
iteration is applied to a drastically shrinked regionΩsmall

after one cycle. To avoid the aperture problem, the minimal
eigenvalue of the matrixGRLOF is computed to decide if
the feature is trackable [13], [31]. Another criterion to decide
if the feature could be tracked with the small region is taken
by comparing the normalised residual errorERLOF of the
current and the large region. In the positive case, the iteration

is continued until reaching final convergence or a maximal
number of iterations, otherwise the region size is increased
step by step by the default value two until a trackable size or
Ωlarge is reached. In this field there are still a lot of research
opportunities, but topics as e.g. variable window shapes oran
exact investigation on the influence of the size step are far
beyond the focus of this article.

B. Empirical Validation

We experiment with the four case studies of Section II-B
comparing the convergence of RLOF with the original KLT
applied to the small and the large region size used in RLOF.
The iterative solution for each of the four displacements is
shown in Fig. 5. The termination criteria are set to a maximal
number of 20 iterations and a minimal change of∆d by
0.001. The black dash lines display ground truth motion at
the respective positions. The results confirm our expectation
that a small region favors a higher resolved motion field in
particular at motion boundaries, see Fig. 5(b,c). A large region
converges on average with fewer iterations. It achieves a low
resolved motion (in our case it is not able to separate the
motions). We observe in Fig. 5(d) that the small region KLT
fails to converge with the appearing pixels, while a large region
converges to an inaccurate solution. By adapting the region
size and applying a robust estimator, the capability of the
RLOF to separate different motions and to neglect outliers
introduced by appearing pixels is increased. We observe that
RLOF can increase the accuracy and stability of current KLT
methods which is paid for by a higher number of iterations
than the KLT with the large region.

C. Computational Complexity

With n as the number of computed motion vectors andN
being the number of pixels of the regionΩ, the computational
cost of the Lucas/Kanade method for one iterative step is
given by: 1) computing the warped spatial derivative∇I
(O(nN)), 2) computing the gradient matrixG (O(nN)) and
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Fig. 6. Comparison of execution times: KLT and RLOF method with varying
number of tracked points. The 25 fps threshold is shown as black dash line.

3) computing the incremental solution (O(nN)), (6). Baker
and Matthews proved in [23] that the inverse compositional
algorithm also used in [28] is the same as the Lucas/Kanade
algorithm but far more efficient because the spatial derivatives
and the gradient matrix only have to be computed initially. The
computational cost of this variation, used by the KLT method,
is given byO(nNi). Thus for a fast tracking method, on the
one hand the convergence must be fast while the region size
should be kept small. AsN is quadratic to the region sizeΩ in
most cases, a small region size is preferred. However, Figure 5
shows how a small region tends to converge more slowly to
the correct solution as the region is more likely to contain less
gradient information (see Figure 1 for the respective regions).

Within the robust norm the gradient matrix (19) has to
be computed for each iterative step by revalidating each
pixel N . Thus the computational complexityO(inN) is
increased by recalculatingGRLOF (O(nNi)). Through the
varying region size the computational complexity of the RLOF
is bounded byO(nNsmalli) andO(nNlargei). Figure 6
shows the runtime of the KLT and RLOF method related to
the number of tracked points. The implementation is tested on
an AMD Phenom II X4 960 running at 2.99 GHz and without
multithreading.

As the computation of each motion vector is independent,
the runtime can be decreased by parallelisation (using e.g.
OpenMP). Generally, due to the changing window size, the
RLOF converges more slowly than the KLT using one large
region (see Fig. 5). This is due to the smaller amount of
gradient information contained in small windows. However,
thanks to the adaptive region size, the RLOF is less time
consuming. So the adaptive region size is not only advan-
tageous for accuracy at motion boundaries but also results in
a decreased computational cost compared to KLT with large
region size. A general advantage of local optical flow methods
is shown in Fig. 6 with the linear scalability due to the number
of tracked pointsn. In our experiment, we vary the number
of motion vectors by applying a grid with different sizes to
find the points to track. The RLOF processes 551 features in
44.38 fps using the CPU on an image of the size584× 388.
Thus it needs only 70% of the runtime of KLT using a large
region. By using not more than a few sets of points to track,
the runtime depends mainly on the initial calculation of the

image gradients and is thus in this experiment bounded by 6.7
msec.

V. EXPERIMENTS ONV IDEO SEQUENCES

In the following section, we show the results of our ex-
periments for long-term trajectories. We compare the RLOF
to the KLT and the state-of-the-art dense trajectory methods
LDOF [11] and Particle Video [10]. To deal with the large
motions the RLOF and KLT are implemented in a pyramidal
manner [24], [28]. For our experiments we apply 4 levels. The
small and large region sizes are set to7×7 and17×17 and
the maximal number of iterations is 20. RLOF works with a
robust norm specified byσ1 = 5 andσ2 = 50. The KLT
experiments are performed with all valid region sizes between
7× 7 and17× 17.

A. Evaluation Methodology

We evaluate the performance of the tracking methods with
the MIT dataset [25]. In contrast to the Middlebury dataset,
this dataset provides the ground truth optical flow for whole
sequences of up to 75 frames. We compare the accuracy of the
trackers for the entire length of the sequences by comparing
trajectories. A trajectory is created for each pixel of the
first image and tracked through all the frames. Ground truth
trajectories are obtained from the ground truth optical flow.
To compute subpixel accurate tracks, a bilinear interpolation
is applied. A trajectory is stopped as soon as a point gets
occluded or is incorrectly tracked. We detect these for the
KLT and RLOF method by checking the consistency of
the forward and backward flow. The consistency check is
done by thresholding the forward displacement from image
I(t) → I(t + 1) and the respective warped reverse one
I(t+ 1)→ I(t):

∥

∥dI(t)→I(t+1) + dI(t+1)→I(t)

∥

∥ < ǫd (20)

The measurement is based on two criteria: 1) The Average
Endpoint Error (AEE) between the set of trajectoriesT and
the set of ground truth trajectoriesTGT

AEE =
1

|T |

∑

|T |

||ẋT − ẋTGT ||
2, (21)

with ẋ as the end point of each trajectory and 2) the Tracking
Efficiency (η)

η =
1

|TGT | · L

∑

|T |

lT . (22)

In contrast to [24] this measure is defined as the quotient
of the average oflT , the length of all successfully tracked
features andL, the total number of frames of each sequence.
The combination of these two criteria is plotted as Tracking
Performance by varyingǫd, see Fig. 8. Note the AEE is accu-
mulated for all trajectoriesT and not only for the trajectories,
which are tracked until the last images successfully.
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no compression JPEG quality 30% (PSNR 39.38 dB)

JPEG quality 10% (PSNR 34.96 dB) error histogram (JPEG quality 10%)

Fig. 7. Robustness test is performed with different JPEG compressions. This
kind of error is not Gaussian distributed.

B. Results

In real life scenarios e.g. video surveillance, videos are
provided in a compressed way, e.g. H.264, MPEG4 or Motion
JPEG. Thus the video is affected by compression artefacts.
In the statistical point of view these artefacts are a source
of noise, which is not Gaussian distributed (see Fig. 7). This
is why we are in addition interested to compare the tracking
methods related to different compressions. The results forthe
’Toy’, ’Fish’ and ’Table’ sequence are shown in Fig. 8.

In the ’Toy’ sequence (18 frames) the camera is moving
transversal in front of a set of teddy bears. Large areas behind
the bear (left) are uncovered while computation of optical
flow is hampered by the very homogeneous areas of the black
and white panda. The ’Table’ sequence (13 frames) shows a
circular motion around a table with different objects on top
occluding each other. Due to depth of field, the background
is very blurred and contains little texture information which
makes it a hard area for estimating optical flow. The ’Fish’
sequence (75 frames) is the longest of the sequences. The
backgrounds are blurry while the video also suffers from
strong noise and low brightness. The motion estimation is
further aggravated by the transparent motion that covers the
whole sequence caused by dist particles moving in the water.

As described above, the Tracking Efficiencyη is a value
between 0 and 1 which describes the percentage of the
trajectories the algorithm is able to maintain in relation to
their length. Tracking all trajectories over all frames would
correspond toη = 1 while tracking only half of the pixels
for the full length (or all pixels for half the number of frames)
corresponds toη = 0.5.

Figure 8 shows the Tracking Efficiency compared to the
Average Endpoint Error. Regardless of the compression level
and the Salt & Pepper noise with a density of 0.02, by these
examples can be seen that RLOF usually achieves better results
than the KLT variants. While the proposed CPU implementa-
tion of the RLOF achieves a frame rate of 44 fps by tracking
551 features, we provided in [24] a parallelized version of the

LDOF
Toy Fish Table

AEE η AEE η AEE η

JPEG quality 30% 3.10 0.87 19.18 0.37 3.85 0.65
JPEG quality 10% 5.78 0.65 21.85 0.38 5.08 0.49

Salt & Pepper 3.32 0.63 27.40 0.26 3.51 0.45

Particle Video
Toy Fish Table

AEE η AEE η AEE η

JPEG quality 30% 13.07 0.84 68.45 0.69 24.09 0.75
JPEG quality 10% 10.21 0.83 49.35 0.63 31.31 0.71

Salt & Pepper 34.70 0.76 102.86 0.58 52.01 0.69
TABLE II

EVALUATION OF TRACKING PERFORMANCE FOR THELDOF AND

PARTICLE V IDEO METHODS OVERMIT SEQUENCES.

RLOF, which is able to compute up to 10.000 feature points
on HD content in real-time (>25 fps). The implementation
was done using OpenCL and runs on a NVidia GTX 275
GPU.

The region size used in RLOF is varied between7 × 7
and 17 × 17 which are the minimal and maximal region
sizes of the KLT algorithm used in these experiments. We
conduct thus from the higher performance that varying the
region size is a favourable extension of the standard KLT. The
performance of all algorithms decreases with higher compres-
sion rates which shows that all methods suffer from the loss
of information during JPEG compression. Especially smaller
window sizes have disadvantages with increasing compression
rate as they suffer more from compression noise. Still, by
varying different region sizes, RLOF is able to achieve better
results than standard KLT trackers. The evaluation of the
dense LDOF (available at http://lmb.informatik.uni-freiburg.
de/resources/binaries/) and the Particle Video tracker (available
at http://rvsn.csail.mit.edu/pv/) are shown in Table II using
the default parameter set given by the authors. While the
LDOF outperforms the RLOF and KLT in terms of accuracy
except in the fish sequence caused by its transparent motion,
the RLOF still achieves a good accuracy compared to the
Particle Video method. We observed that the optimization
step of the Particle Video method, which often improves this
method, fails at areas containing little textured information,
e.g. the table in the ’Table’ sequence. The runtime of the
dense optical flow methods was measured for ’Toy’ of size
972× 723. The runtime is almost constant and independent
of the number of tracked points, which is why we prefer local
optical flow methods in time-critical applications. The CPU
implementation of the LDOF requires about 139 seconds and
the Particle Video about 135 seconds per frame. While we
evaluate a dense trajectory set i.e. 702756 points to track at
the first image, the RLOF also requires 173 second.

VI. CONCLUSION

In this paper we illustrated the benefit of a robust framework
for feature tracking via local optical flow. Motivated by
an extensive analysis of data distributions we propose the
RLOF approach based on a modified Hampel estimator with
robust characteristics. To cope with the generalized aperture
problem a strategy to adapt the region size was developed. The
effectiveness of our approach is shown under various scenarios
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Fig. 8. Evaluation of the Tracking Performance for the ’Toy’,’Fish’ and ’Table’ sequence with different compression rates of the MIT [25] dataset and salt
& pepper noise with a noise density of0.02. The region size of the KLT was varied form7 × 7 to 17 × 17 which is the range of the window sizes for
RLOF. Exemplarily7 × 7, 11 × 11 and17 × 17 are shown.

as motion boundaries, changing illuminations and appearing
pixels all violating standard Lucas/Kanade assumptions. In our
experiments, it could be shown that a robust estimator gives
better results. Evaluations on the MIT database show an ex-
cellent long-term feature tracking performance of RLOF with
only slightly increased computational complexity compared to
KLT.
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