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Abstract—The presented work is motivated by the problem of As described by Black and Anandan [4] the violations re-
local motion estimation via robust regression with linear models. sylt in gross measurement errors which are referred to as
In order to increase the robustness of the motion estimates we , tiers. Since Horn/Schunck and Lucas/Kanade penalige th

propose a novel Robust Local Optical Flow approach based . .~ . tion i drati th del d t hand|
on a modified Hampel estimator. We show the deficiencies of minimization In a quadratic way the model does not handie

the least squares estimator used by the standard KLT tracker outliers robustly. Black and Anandan [5] proposed a robust
when the assumptions made by Lucas/Kanade are violated. We estimation framework exploiting the Lorentzian robustmor
propose a strategy to adapt the window sizes to cope with the  Most of the state-of-the-art global optical flow methods
Generalized Aperture Problem. Finally we evaluate our method are using robust estimation frameworks. Common norms are

on the Middlebury and MIT dataset and show that the algo- o 1 C . .
rithm provides excellent feature tracking performance with only the modified L°, which is successfully used in different

slightly increased computational complexity compared to KLT. Solutions, e.g. by Broxet al. [6] or the HuberZ' norm
To facilitate further development the presented algorithm can be used by Werlbergeet al. [7]. An additional benefit can be

downloaded from http://www.nue.tu-berlin.de/menue/forschung/ achieved by combining this with more sophisticated Total-

projekte/rlof/. Variation techniques as in e.g. Papenbetal. [8] and Zach
Index Terms—KLT, Robust Estimation, Feature Tracking, et al. [9]. Generally global optical flow methods achieve a
Hampel, Long-Term Trajectories, Optical Flow superior accuracy compared to local optical flow methods.

Sand and Teller [10] proposed the Particle Video framework
to compute a dense set of long term trajectories from dense

) ) . ) optical flow, which is rather slow. In [11] a large displacere
T HE computation of 2D-image velocities, or optical flowgyiica) flow as introduced in [12] is used to create densetpoin

is @ common topic in computer vision. Our challenggsiectories with a high performance.
is to estimate the scene or object motion as precisely andjYet, applications as robot navigation, augmented reality,
computationally efficient as possible. Common optical floyisyal attention and camera self-calibration require Vet
techniques exploit two constraintstata conservationand — getection of interest points and the subsequent search for
spatial coherence Data conservation is derived from theystential correspondences in real-time. Methods with kedwe
observation that the observed objects generally perstshi 1 nime performance exploiting local optical flow techrégu
Thus.the intensity ofasmall'reglon. in tvyo conse.cutlve iNAg@s the popular KLT tracking algorithm [13] are still ap-
remains constant, although its position is changing. 8sl$ pjieq in many cases. Comparitive studies indicate that the
to the mathematical formulation of thiatensity constancy | ,cas/kanade algorithms provide accurate results [1] evhil
assumption being significantly more efficient [14] than other opticahflo
methods.

I@y.t) =@+ udt,y +vdt, ¢ +3t), @) Research of local methods is often motivated by improving
with I(x,y,t) as the image intensity of a grayscaled imagehe runtime performance. E.g. Seesal.[15] propose integral
d = (u,v)” denoting the displacement of a point afidas images to decrease the computational complexity per sttere
a small time difference at a position = (x,y). Different point. Sinhaet al. [16], Zach et al. [17] and Fassoldet
approaches to solve this equation have been describedywidsl [18] improve the runtime performance by parallelising
in the literature [1]. The most successful methods to compuhe algorithm and porting it onto a GPU. While in many
d use a linearisation of Eq. 1 performed by a first order Tayloglobal optical flow methods robust estimation techniques ar
approximation and are therefore gradient-based. Thisléad established, most local methods are currently based ot leas
an underdetermined linear system. To solve this system, teguare optimisation. Gain adaptive modifications were pro-
kinds of spatial coherence conditions have been introducedsed by Zachet al. [17] and Kharbatet al. [19]. Kim et
and established: the techniquesgbbbal and local gradient- al. [20] propose an approach robust to varying illumination
based approach. By introducing an additional global cairtr using a least-median of squares method which is robust but
Horn and Schunck [2] apply a soft spatial coherence forcirigcreases the runtime drastically. Robust motion estinéftr
the partial derivatives of neighbouring motion vectors ® kiracking has also been investigated in [21] as an applicatfo
minimal. A strong spatial coherence was introduced by Lucf#?]. Bakeret al. [23] has detailed faced up to Lucas/Kanade
and Kanade [3] that is categorised as local constraint éxjpec regarding to the image alignment problem and a higher oddere
the motion in a small region to be constant. parametrized warping model.

These assumptions are simplifications and hence may bdhe aim of this paper is to introduce an efficient and
violated in practice. For example motion boundaries velatobust local gradient-based feature tracking system tleet w
the common assumption that the optical flow varies smoothbarlier motivated and proposed in [24]. In this paper we

I. INTRODUCTION



evaluate shortcomings of the established KLT method. Basedl) Linearisation Problem: The original Lucas/Kanade
on empirical findings we establish a novel robust local @ticmethod [3] is restricted by the first order Taylor-
flow algorithm based on a modified Hampel estimator. Wepproximation. The assumption of a linear relation between
show that this algorithm provides excellent feature tragki the gradientsVI and the motion is only accurate for small
performance with only slightly increased computationaheo motions. To cope with small linearisation errors, Boug@&] [
plexity compared to KLT. proposes an iterative solution in a Newton-Raphson fashion
The remainder of this paper is organized as follows: Sed-is iteratively solved for increments to the displacemArd:
tion 1l describes the Lucas/Kanade approach analogousto th
regression of a linear model. It will be shown that this least Ad* =G 1. Z VI(x) - I7 (x) (6)
squares estimate behaves badly when assumptions aresdiolat I3}
In Section Il and Section IV we introduce our feature tracke . . .
based on a robust estimation framework and in Section V V\\/IvgereG d(.enotes the Hessian and the resulting displacement
evaluate our results regarding the MIT database [25] IS updated: : " :
' d' « di~! 4+ Ad! @)
II. LUCAS/KANADE IN A STATISTICAL CONTEXT and the second frame being updated at each iteratsnthat
II"'(x) = I(x,t) — I(x + d*~1,t + 1). The iterative
In this section we want to focus on the Lucas/Kanadsyution is initialised withd = (0,0)7. In the literature (6)

algorithm viewed in a statistical context. has also been described by [23] as the inverse compositional
The general gradient-based local optical flow constraint égorithm for translational warps. To cope with motion karg
formulated as follows: than a single pixel, a coarse-to-fine strategy is employed in

which pyramids of spatially filtered and sub-sampled images
Epocat = »_w(x) - p(VI(x)" -d+L(x),0) () e crerged. Py i ’
@ 2) Aperture Problem:Eqg. (6) has a limitation, which is
To find a displacemend, the residual error Ej,.,; is min- commonly referred to as the aperture problem. There exists
imised for a small image regiox € Q, with the spatial only a solution ofd if G is not singular. This implies the
derivativesVI(x) = (I,(x,t),I,(x,t))T and the temporal existence of gradients im andy direction in the observed
derivative I;(x) = I(x,t) — I(x,t + 1), w(x) a weighting region{2. In consequence the Lucas/Kanade algorithm could
function and a normp, with its scale parameters and not be applied on homogeneous image content. To overcome

x = (x,y) image pixel postions. this problem a large regiof? is needed to increase the
Consider a linear model and its residual: probability that the region contains edges.
3) Generalized Aperture Problemihile a large region is
€ = Yi — £i0b0 — ... — £;;0; (3) needed to constrain the solution and provide insensititgty
. . . ., noise, it also increases the risk of violating the local ¢tansy
for the ith of n obsenvations(do, . . ., £45, 4:). If &; are ssumption, whereby a region should be described by only one
independent and normally distributed, Gauss proved tret ti}lﬁotion. Contrarily, a small region decreases the proligbili

optimal fit 6 of parametersd = (60,...,0;5) can be

. . that a region contains discriminative edges. That dilemsna i
estimated with the least sum of squares

referred to as Generalized Aperture Problem [29].

. 2
man Z €i (4)  B. Observation distributions

. ) o As discussed in section II-A the assumptions underlying
The least-squares estimator relies on a very efficient ct®pupe |ycas/Kanade algorithm can be violated by homogeneous
tional complexity. The optimal paramet@y (4) can be directly regions, motion boundaries, the appearance and disapeeara
_computed by_an explici_t formulation. However, this estianat ¢ pixels e.g. by occlusion and changes of illumination.
is very sensitive to outliers [26], [27]. This section studies the characteristics and distributibthe
observed datd,,,I,, and I, to motivate the robust framework
proposed in section IV. It should not be seen as a complete
investigation but illustrates potential problems of thenstard
The Lucas/Kanade method is given by the gradient-basggdcas/Kanade method. Similar experiments for settings of
formulation: different motion were already conducted by Black and Anan-
. 2 dan [5]. By the use of two different synthetic moving pattern
mgnz (VI()T -d + L(x)) ®) they show that a robust estimation could suppress the non-
@ dominant motion efficiently in theory. To apply the experi-
To find a displacemend, the sum of least-squares is miniments in a more realistic scene, the 'RubberWhale’ sequence
imised for a small image regiof2. In the statistical context a of the Middlebury dataset [30] is used. The Middlebury detas
regression for a linear modgl — %7 - @ with the parameters includes synthetic and realistic pairs of consecutivelytased
6 = d is done using the observationgig,#1,9y) = Iimages and provides the optical flow as ground truth for each
(I, Iy, I) of the regionf2. pair. To show the distribution of the observed data, two $ype

A. Lucas/Kanade Locally Constant Flow
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Fig. 1. Distribution of the residual errar (bottom right) and the data of the spatial and temporal dévas (bottom left) fulfilling the Lucas/Kanade
assumptions (a). The data scatter plot includes the grounH totion as plane. (b) shows different motions where the motibthe region center is
illustrated as grey plane and the motion of the bottom rigbtore border as transparent plane. (c) shows a setting witingihg illuminations affected by
shadows and (d) the appearing of occluded pixels by diffemastions. The illustration at the top shows the derivativethe region (left) and an overview
of the region position containing a magnification of the ralgvarea and a magnification of the color-coded ground-truth.

of plots are used. At first the distribution of the residudl (3and spatial gradients in x and y direction prevent the gradie
is displayed, see Fig. 1 (bottom left). To get a more detailedatrix G from singularity. The distribution of the residual and
view, the distribution of the observed data is displayechwitdata is near to be normally distributed. The second test show
a scatter plot for each region, see Fig. 1 (bottom right). The Fig. 1(b) is captured at the positiof(83,64) in which
used region sizel{f x 17) corresponds to a common size fothe region contains two different motions. The plane of the
the Lucas/Kanade algorithm. Additionally the spatial geats second motion is displayed with transparent faces. Oblyious
I, I, and different temporal pixel valuds', I? contained by the distribution of the residual and observed data does not
the region are shown at the top left while the coarse positiémllow a Gaussian distribution.

of the region can be seen at the top right. The picture comtain

a magnification of the relevant area and a magnification of theA test of changing illumination is shown in Fig. 1(c),
color-coded ground truth, see [30]. captured at the positio(60, 374). The different illumination

is affected by the moving shadow of the red wheel. Obviously

The first test is shown by Fig. 1(a) where the data is capturée distribution of the residual and data is biased and not
at position(17, 213) and the region fulfils the Lucas/Kanadenormally distributed. The last test at Fig. 1(d) plots a skmp
assumption. It includes a single motion, constant illurtiores of a region that includes an appearing texture. It is capture



at position(386, 312). In contrast to experiment (b) the data o) )
includes outliers, which are not affected and do not belong : :
to one of the two motions. This results in an asymmetric and
non-Gaussian distribution.

Most of the problems in realistic scenes occur at motion
boundaries. The violation of the local constancy assumptio
mostly coincides with the violation of the intensity comsta
assumption by occlusion. In relation to the KLT-Tracker][13 (a) Quadratic
this becomes an important aspect. To avoid the aperture o)
problem, this often used tracker performs a feature selecti
algorithm (e.g. Good Features To Track [31]) to detect corne
points with high edges in both directions and thus a high
minimal eigenvalue ofG. In practice, these edges lie in all
likelihood at motion boundaries. This gives the motivatton
use a more robust estimator than the least-squares estimato ”

(b) Huber

[1l. ROBUSTESTIMATOR WITH PIECEWISELINEAR P v
INFLUENCE FUNCTIONS |

Huber [32] formed the first basis for a theory of robust
estimation and introduced a class of estimator, caléd
estimator

n—1
’"37‘:£: p(€is ), (8) (d) shrinked Hampel

=0 Fig. 2. Common error normp with piecewise linear influence functions.
wherep is an error norm, with its scale parameterswhich
may or may not be present. The M-estimator is a generalisatio
of the well-known maximum likelihood estimator withoutthey have very low breakdown points [33]. Black and Anan-
assuming thafp is of the form —logf for any probability dan [5] proposed an implementation for the optical flow using
density f. The robustness of the estimator depends on ifse Lorentzian norm
error norm. An approach based on the influence function was 2¢;
introduced by Hampel [33]. The influence functign(y, o) P(ei, o) =
as the derivative of the estimat@n(y, o) characterizes the
bias that a particular measurement has on the solution. Ttbeimprove the behavior of motion computation at motion

(10)

202 + €2

estimation of6 can be given by the influence function: boundaries. Odobez and Bouthemy [22] proposed a redescend-
) ing M-estimator implementation based on Tukey’s biweight
i O¢; norm [36]:
S (e o) 2 =0 ©) 136]
i=0 96 € (0'2—62)2 el <o
vie o) = 0 ' else (1)
Figure 2 shows the drawback of the least-squares solution: ’

Outliers are assigned a too high weight by the quadratia erfphe M-estimator problems using the robust norms (11) and
norm p = y*. More robust norms are th&' norm [8], (10) cannot be solved analytically, which is a drawback with
[9]. [32] and Huber's minmax norm [7], [34] because theifegard to computational complexity. The solution can iadte
influence functions are limited. Both are equivalent fogér pe found using the iteratively reweighted least squaresiodet

values but for normally distributed data tifié norm produces py transforming the M-estimation problem into an equivalen
estimates with higher variance than the optimal quadratjeighted least squares problem [22]:

L2 norm [34], [35]. In contrast, Huber's minmax norm is

designed to be quadratic for small values, which makes it nol 1! )
applicable for Newton. Z p(ei, o) = 2 Z w; - €, (12)
=0 =0

where the weight at each observatiop is given by:
. . . _ P(e:)
To increase the robustness the influence of extremely dis- w; = . (13)
cordant observations should be reduced to zeroyShould €i
be designed to vanish for large values. This was a reasénother alternative to the M-estimator is the least median
to develop redescending M-estimators which Huber desttribef squares estimator (LMedS), advantages of which lie in
in [35]. An advantage of redescending M-estimators is thas theoretical high robustness. But as Odobez and Bouthemy

A. Redescending Influence Function
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Fig. 3. Error surfaces of the residual error sum obtainedasying (u, v) with the error functions shown in Fig. 2 in the scenario of.RigThe ground truth
motion of (a) isd(17,213) = (1.36, —0.01) and the center motion of (b) i4(33, 64) = (0.09, 0.15) including a second motion at a neighbouring
pixel d(41, 70) = (0.91, —0.08). Ideally, the minima in the plots should be at the ground truttienoand smooth surfaces should simplify the gradient
descent. The ground truth of the center motion are shown aack kot and the corresponding second motion as a red circiebitte lines denote small
values while the red lines denote big values.
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Fig. 4. Error surfaces of the residual error sum obtained #ying (u, v) with the error functions shown in Fig. 2 in the scenario of.Flg The
ground truth motion of (c) isl(50, 374) = (1.06,0.02) and the center motion of (d) id(386,312) = (0.96, —0.02) including a second motion
d(378,312) = (—1.94, —0.76) . Ideally, the minima in the plots should be at the ground truttiencand smooth surfaces should simplify the gradient
descent. The ground truth of the center motion are shown aack liot and the corresponding second motion as a red circiebltte lines denote small
values while the red lines denote big values.

stated, the computational cost of LMedS is very high and veith the influence function:
increasing rapidly with the amount of data.

2¢; sei| <o
A primary aim of this paper is to keep the computational 4 (¢;,0) = { 0 , |ei] > o2 (15)
effort as low as possible. We therefore want to focus on o1(ei—sign(ei)-02)  alge
estimator classes with an influence function composed of 0-5(01—02) ’

linear functions. Figure 2 shows common error norms basegyeral algorithms were investigated by Dutter [37] inelud
on composed quadratic functions. We base our approach“qg Newton’s method which we want to use to solve (9).
the Hampel estimator but reduce the number of its parametgfSyton’s method has the remarkable property that it reaches
by shrinking the high and low flat segment to: the theoretically exact solution in one single step, if ttats
value is close to the solution and a (composed) quadratic err
norm is used [35]. A comparative study of these redescending
M-estimators is given by Shevlyakaet.al [38]. The Table |
shows the evaluation of dense optical flow from different M-

2 .

€ e < o estimator for images in the Middlebury dataset. The refezen
p(€i,0) = {0102 . sl€il 2 o2 (14) KLT method based on the quadratic norm is compared to

aileil=o2)” 4 5 &, | else the M-estimator implementations regarding [22], ava#aat

01—02



Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus
AEE R0.5 AEE RO.5 AEE R0O.5 runtime AEE RO.5 AEE R0O.5 AEE RO.5 AEE R0.5 AEE R0.5
KLT 1.24 0.14 2.50 0.15 1.75 0.36 76 (sec) 213 0.24 1.76 0.15 1.83 0.21 2.30 0.25 0.96 0.16
RLOF* 0.93 0.14 0.30 0.10 1.04 0.29 75 (sec) 1.07 0.22 0.32 0.13 1.27 0.20 131 0.24 0.86 0.15
RLOF# 2.69 0.16 12.78 0.26 6.33 0.39 72 (sec) 0.79 0.30 0.39 0.15 10.36 0.30 9.12 0.37 0.93 0.23
RLOF 0.20 0.13 0.23 0.09 0.78 0.26 73 (sec) 0.35 0.20 0.25 0.11 0.80 0.17 0.85 0.23 0.48 0.16
TALWAR 0.24 0.14 0.27 0.09 1.27 0.28 839 (sec) 0.50 0.23 0.32 0.13 5.90 041 4.81 0.40 1.33 0.27
TUKEY 0.24 0.14 0.27 0.09 1.27 0.28 789 (sec) 0.50 0.24 0.32 0.13 5.89 041 4.84 0.40 131 0.27
CAUCHY 0.24 0.14 0.28 0.10 1.22 0.29 811 (sec) 0.48 0.23 0.32 0.14 5.75 0.39 4.80 0.40 1.29 0.26
WELSH 0.24 0.14 0.27 0.09 1.24 0.28 819 (sec) 0.49 0.23 0.32 0.13 5.82 0.40 4.85 0.40 1.28 0.27

ABLE T
AVERAGE ENDPOINT ERROR (AEE) AND THE RO.5ERROR FORMIDDLEBURY DATASET. THE RLOF* (RLOF WITHOUT ADAPTIVE REGION SIZE, SEE
SECTION V) SHOWS SIMILAR ACCURACY COMPARED TO THETALWAR, TUKEY, CAUCHY AND WELSH ROBUST NORMS[22] BUT A RELATIVELY SHORT
RUNTIME. RLOF#DENOTES THERLOF WITHOUT USING THE MODIFIED ESTIMATOR RO.5DENOTES THE RATIO OF PIXELS THAT HAVE AN ENDPOINT
ERROR ABOVEQ.5AND ILLUSTRATES THE OUTLIER RESULTING FROM EACH METHOD

http://www.irisa.fr/vista/Motion2D/about.html, for ¢hTalwar, linear Lucas/Kanade model because the derivafieg/00
Tukey, Cauchy, Welsh norm and to the RLOF. RLOF is showat homogeneous regions is zero and shrinks its influence.
in three variants: (a) as described in Section 1V, (b) wite thn consequence the improvement of distinguishing differen
shrinked Hampel norm and having a fixed region size (RLOFotions in a region by robust estimation depends on the ratio
and (c) with quadratic norm and adapted region size (RLOF#Y. the textures introduced by each object.
With a relatively short runtime the accuracy of the RLOF* is
comparable to the other robust norms. Further improvement
is reached by adapting the region size of the RLOF*. The
runtime was computed at the 'Grove@40 x 480 sequence The outcome of our experiments leads us to propose a
by CPU specification regarding Section V. All methods useariation of the Lucas/Kanade method using the shrinked
default parameters and a region sizel@f x 17. Hampel norm (14): the Robust Local Optical Flow (RLOF)
method. The inverse compositional RLOF residual error is
formulated as:

IV. RoBusTLOCAL OPTICAL FLOwW

B. Experiments with composed quadratic error norms

In this subsection we want to study the effect of the differen Egrror = Z e+ Z 0102
norms (see Fig. 2) to the Lucas/Kanade method with regard to 2.C0 Q23C0
exemplary data distributions shown in Fig. 1. Figure 3 and 4 _ 16
show error surfaces of the observations rendered for anegio + QZC:Q o1 — O3 oo, Ul —02)  +ouoa (16)
Sizel7 x 17. The error surfaces display the sum of the residual z
error €; (u, v) weighted with theL?, truncatedL?, Huber or with
shrinked Hampel error function while varyir(@, v). Ground e=VIx)T.d+ I(x) a7
truth motion is taken from the dataset and used as solution _ N
information for the center pixel of the region. and 2, as the subset of data & fuffilling |e;| < o1, Q2

To validate the normally distributed data, the experimefienoting the subset fulfillingr, < |e;| < o2 and 3 for
with scenario (a) from Fig. 1 is shown in Fig. 3(a). The minim@hich holds|e;| > 0. As stated in Section IlI-A, (7) can be
of all error surfaces are near the expected ground trutrevalgolved:

Fig. 4(c,d) show cases of appearing pixels, in (c) the P i1
appearance of the shadow at the right region side and in Ad" = Ggror - [Zﬂlm VI() - I (x)

(d) uncovered pixels, both violating the intensity constan +a.ca oices " VI (x)
assumption. i—1 . i—1
Minima of the Huber norm are closer to the ground '(It (x) = sign(Z;™(x)) '02)} (18)

truth than the minimum of the least-squares norm. HoweVWhereGRLop is the modified Hessian matrix

redescending influence respectively bounded influencesgive

an additional improvement of the behavior concerning gross GrLOoF = Z VI(x) - VI(x)T

outliers. As stated by Hampel [33], non-monotone influence Qlcﬂ

functions should be used with caution. In general they shoul T

also not descend too steeply. Figure 4(d) shows that the + Z VI(X) VIE). (19)

Q2 Q
truncatedL? norm produces a more non-convex error surface =

with local minima that could corrupt the minimisation of (8) As stated in [35], it is important that the influence function
While the result of Fig. 4(d) corresponds to the multiples of the norm does not descend too steeply as long as the
motion experiments of Black and Anandan, Fig. 3(b) showalue of1 is still high. We incorporate this by using thg?
different characteristics. The minimum is nearer to thesdc norm as a monotone for the first iteration. This can easily
motion of the region border than to the motion of the regiobe done by setting; = oo andeos = oo For the following
center, while a second minimum is not visible. This behawvioiterations we append cycles with the non-monotahesince
can be observed at motion boundaries where at least ond objee corresponding shrinked Hampel norm is non-convex and
is homogeneous. The data at homogeneous areas has nth@rdetermination of the minimum may be trapped in local
only a small impact on the result of the estimates of thminima far away from the true minimum.
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Fig. 5. Example of the RLOF and KLT algorithm with differengien sizes converging at the four case studies, Section TiH# resulting motior{(u, v) is
plotted against the iteration number. The ground truth isvshas black dash line, and termination criteria are set withm2@imal iterations and a minimal
change ofAd by 0.001.

A. Generalised Aperture Problem is continued until reaching final convergence or a maximal
o _ number of iterations, otherwise the region size is incréase

As shown in Fig. 4(c,d) and by the experiments dongep by step by the default value two until a trackable size or
by [29] redescending norms are able to cope with perturbanoﬂlarge is reached. In this field there are still a lot of research

affecting the local constancy and brightness constan@n@iss opportunities, but topics as e.g. variable window shapesnor
tion. An essential requirement therefore is that the oleservgyact investigation on the influence of the size step are far

underlying moving object owns the dominant textures in tr@eyond the focus of this article.
observed domain. For example this is not fulfilled in Fig.)3(b
The motion boundaries example contains two moving objecg:
the wooden fence in the foreground containing the dominant i ] . )
textures and the background. While the centre of the observedVe experiment with the four case studies of Section II-B
region lies on the background, we are interested to comp&@mparing the convergence of RLOF with the original KLT
its motion. The observations of the backgroung (which applied to the small and the large region size used in RLOF.
correspond to its spatial and temporal derivatives) are |e5he iterative solution for each of the four displacements is
correlated than the observations of the foreground fenas T Shown in Fig. 5. The termination criteria are set to a maximal
the estimation of the parameter getis determined by the Number of 20 iterations and a minimal change Al by
fence motion, while the background motion is treated &5001. The black dash lines display ground truth motion at
outlier. This example shows that the observation done A€ respective positions. The results confirm our expertati
Fig 4(c,d) and [29] cannot always be valid. To cope at |eag}at_a small region favors a higher r_esolved motion f|eld in
with the violation of the local constancy assumption, tharticular at motion boundaries, see Fig. 5(b,c). A larggore
observed region has to be as small as possible with regard@§verges on average with fewer iterations. It achievesia lo
the generalized aperture problem to increase the probabifiesolved motion (in our case it is not able to separate the
to contain no motion boundary. An additional reason to sBtotions). We observe in Fig. 5(d) that the small region KLT

the observed regiof? as small as possible is caused by thi&ilS to converge with the appearing pixels, while a larggae
computational effort. converges to an inaccurate solution. By adapting the region

Therefore we propose a strategy to adapt the region SE e and applying a.robust esUmator, the capability of .the
OF to separate different motions and to neglect outliers

depending on the residual errd¢grLor and the contained . : . o
texture. At firstd is computed for a few number of iterations'ntmduced by appearing pixels is increased. We obsenge tha

i1 applying a large regioq,ge. This results in an overall RLOF can increase the accuracy and stability of current KLT

coarse solution, containing most likely all important tewt methods WhiCh_iS paid for by a higher number of iterations
To achieve a better performance at motion boundaries tW@” the KLT with the large region.

iteration is applied to a drastically shrinked regi®ly,,,q1 ) )

after one cycle. To avoid the aperture problem, the minim& Computational Complexity

eigenvalue of the matrbG grror is computed to decide if  With n as the number of computed motion vectors asid
the feature is trackable [13], [31]. Another criterion tccide  being the number of pixels of the regiéh, the computational

if the feature could be tracked with the small region is takesost of the Lucas/Kanade method for one iterative step is
by comparing the normalised residual ertBRrLor Of the given by: 1) computing the warped spatial derivatiVel
current and the large region. In the positive case, thetitera (O(n.IV)), 2) computing the gradient matr& (O(nN)) and

Empirical Validation



ot} image gradients and is thus in this experiment bounded by 6.7
msec.

V. EXPERIMENTS ONVIDEO SEQUENCES

Time (ms}

In the following section, we show the results of our ex-
periments for long-term trajectories. We compare the RLOF

777777777 - ,,,,..g‘i,,,,,,,, ——RLOF | !
et KT to the KLT and the state-of-the-art dense trajectory method
1 =g —TF 4 . . .
" [ e o LDOF [11] and Particle Video [10]. To deal with the large
Humber of tracked Points motions the RLOF and KLT are implemented in a pyramidal

manner [24], [28]. For our experiments we apply 4 levels. The
small and large region sizes are selfts 7 and17 x 17 and
the maximal number of iterations is 20. RLOF works with a
robust norm specified by; = 5 ando; = 50. The KLT
experiments are performed with all valid region sizes betwe
7 and17 x 17.

Fig. 6. Comparison of execution times: KLT and RLOF method wihying
number of tracked points. The 25 fps threshold is shown asldash line.

3) computing the incremental solutio®(nN)), (6). Baker
and Matthews proved in [23] that the inverse compositiongl><
algorithm also used in [28] is the same as the Lucas/Kanade
algorithm but far more efficient because the spatial devigat
and the gradient matrix only have to be computed initiallye T
computational cost of this variation, used by the KLT method We evaluate the performance of the tracking methods with
is given byO(nN%). Thus for a fast tracking method, on thehe MIT dataset [25]. In contrast to the Middlebury dataset,
one hand the convergence must be fast while the region sihis dataset provides the ground truth optical flow for whole
should be kept small. AW is quadratic to the region siZe in  sequences of up to 75 frames. We compare the accuracy of the
most cases, a small region size is preferred. However, &igurtrackers for the entire length of the sequences by comparing
shows how a small region tends to converge more slowly t@jectories. A trajectory is created for each pixel of the
the correct solution as the region is more likely to contaissl first image and tracked through all the frames. Ground truth
gradient information (see Figure 1 for the respective megio trajectories are obtained from the ground truth optical flow
To compute subpixel accurate tracks, a bilinear interpmiat

Within the robust norm the gradient matrix (19) has té applied. A trajectory is stopped as soon as a point gets
be computed for each iterative step by revalidating ea@gcluded or is incorrectly tracked. We detect these for the
pixel N. Thus the computational complexit®(inN) is KLT and RLOF method by checking the consistency of
increased by recalculating grLor (O(nN4)). Through the the forward and backward flow. The consistency check is
varying region size the computational complexity of the F_Oodone by thresholding the forward displacement from image
is bounded byO(nNamani) and O(nNiargei). Figure 6 I(t) — I(t+ 1) and the respective warped reverse one
shows the runtime of the KLT and RLOF method related tb(t + 1) — I(%):
the number of tracked points. The implementation is tested o
an AMD Phenom Il X4 960 running at 2.99 GHz and without [dr@—11) + digrn 1w || < €a (20)

multithreading. ) ) o The measurement is based on two criteria: 1) The Average
As the computation of each motion vector is mdependerﬁndpomt Error (AEE) between the set of trajectoriBsand

the runtime can be decreased by parallelisation (Using €y set of ground truth trajectori€
OpenMP). Generally, due to the changing window size, the

RLOF converges more slowly than the KLT using one large AEE — i
region (see Fig. 5). This is due to the smaller amount of |T|
gradient information contained in small windows. However,

thanks to the adaptive region size, the RLOF is less timgth & as the end point of each trajectory and 2) the Tracking
consuming. So the adaptive region size is not only advagfficiency ()
tageous for accuracy at motion boundaries but also results i

a decreased computational cost compared to KLT with large

region size. A general advantage of local optical flow meshod

is shown in Fig. 6 with the linear scalability due to the numbe

of tracked pointsn. In our experiment, we vary the numbern contrast to [24] this measure is defined as the quotient
of motion vectors by applying a grid with different sizes t@f the average oir, the length of all successfully tracked
find the points to track. The RLOF processes 551 featuresfeatures and., the total number of frames of each sequence.
44.38 fps using the CPU on an image of the 984 x 388. The combination of these two criteria is plotted as Tracking
Thus it needs only 70% of the runtime of KLT using a larg@erformance by varyingg, see Fig. 8. Note the AEE is accu-
region. By using not more than a few sets of points to trackjulated for all trajectorie¥” and not only for the trajectories,
the runtime depends mainly on the initial calculation of thevhich are tracked until the last images successfully.

A. Evaluation Methodology

Z ||st - dSTGTHZ’ (21)

||

1

n=—""Sip. (22)
|TGT|-LIZTT‘T
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LDOF
no compression JPEG quality 30% (PSNR 39.38 dB) T0y Fish Table
AEE | 7 AEE m | AEE | 7
JPEG quality 30%| 3.10 | 0.87 | 19.18 | 0.37 | 3.85 | 0.65
JPEG quality 10%| 5.78 | 0.65 | 21.85 | 0.38 | 5.08 | 0.49
Salt & Pepper 3.32 | 0.63 | 2740 | 0.26 | 3.51 | 0.45

Particle Video

Toy Fish Table
AEE | 7 AEE nm | AEE | 7
JPEG quality 30%| 13.07 | 0.84 | 68.45 | 0.69 | 24.09 | 0.75
JPEG quality 10%| 10.21 | 0.83 | 49.35 | 0.63 | 31.31| 0.71
JPEG quality 10% (PSNR 34.96 dB) error histogram (JPEG tyu&0%) Salt & Pepper 34.70 0.76 102.86 0.58 52.01 0.69
60 TABLE TI

EVALUATION OF TRACKING PERFORMANCE FOR THELDOF AND
PARTICLE VIDEO METHODS OVERMIT SEQUENCES

a0
40
30

20

RLOF, which is able to compute up to 10.000 feature points
on HD content in real-time %25 fps). The implementation
was done using OpenCL and runs on a NVidia GTX 275
Fig. 7. Robustness test is performed with different JPEG cesgions. This GPU.
kind of error is not Gaussian distributed. The region size used in RLOF is varied betwegnk 7
and 17 x 17 which are the minimal and maximal region
sizes of the KLT algorithm used in these experiments. We

B. Results conduct thus from the higher performance that varying the

In real life scenarios e.g. video surveillance, videos afegion size is a favourable extension of the standard KL& Th
provided in a compressed way, e.g. H.264, MPEG4 or Motigrerformance of all algorithms decreases with higher cosipre
JPEG. Thus the video is affected by compression artefacd®n rates which shows that all methods suffer from the loss
In the statistical point of view these artefacts are a sour6é information during JPEG compression. Especially smalle
of noise, which is not Gaussian distributed (see Fig. 7)s Thivindow sizes have disadvantages with increasing comjaressi
is why we are in addition interested to compare the trackirigte as they suffer more from compression noise. Still, by
methods related to different compressions. The resultthior varying different region sizes, RLOF is able to achievedrett
"Toy’, 'Fish’ and 'Table’ sequence are shown in Fig. 8. results than standard KLT trackers. The evaluation of the

In the 'Toy’ sequence (18 frames) the camera is moviﬁyense LDOF (available at http://Imb.informatik.uni-frarg.
transversal in front of a set of teddy bears. Large areasidehfie/resources/binaries/) and the Particle Video trackeilgble
the bear (left) are uncovered while computation of optic&t http://rvsn.csail.mit.edu/pv/) are shown in Table lings
flow is hampered by the very homogeneous areas of the bldBR default parameter set given by the authors. While the
and white panda. The 'Table’ sequence (13 frames) show$-ROF outperforms the RLOF and KLT in terms of accuracy
circular motion around a table with different objects on topXcept in the fish sequence caused by its transparent motion,
occluding each other. Due to depth of field, the backgroui@®@ RLOF still achieves a good accuracy compared to the
is very blurred and contains little texture information wini Particle Video method. We observed that the optimization
makes it a hard area for estimating optical flow. The 'Fistgtep of the Particle Video method, which often improves this
sequence (75 frames) is the longest of the sequences. method, fails at areas containing little textured inforiomt
backgrounds are blurry while the video also suffers frof®.g. the table in the "Table’ sequence. The runtime of the
strong noise and low brightness. The motion estimation @nse optical flow methods was measured for 'Toy’ of size
further aggravated by the transparent motion that covers #72 X 723. The runtime is almost constant and independent
whole sequence caused by dist particles moving in the watefthe number of tracked points, which is why we prefer local

As described above, the Tracking Efficiengyis a value optical flow methods in time-critical applications. The CPU
between 0 and 1 which describes the percentage of tRiPlementation of the LDOF requires about 139 seconds and
trajectories the algorithm is able to maintain in relatian tthe Particle Video about 135 seconds per frame. While we
their length. Tracking all trajectories over all frames wbu €valuate a dense trajectory set i.e. 702756 points to track a
correspond tay = 1 while tracking only half of the pixels the first image, the RLOF also requires 173 second.
for the full length (or all pixels for half the number of fras)e
corresponds tay = 0.5. VI. CONCLUSION

Figure 8 shows the Tracking Efficiency compared to the In this paper we illustrated the benefit of a robust framework
Average Endpoint Error. Regardless of the compressiorl leYer feature tracking via local optical flow. Motivated by
and the Salt & Pepper noise with a density of 0.02, by thesa extensive analysis of data distributions we propose the
examples can be seen that RLOF usually achieves bettetsesBLOF approach based on a modified Hampel estimator with
than the KLT variants. While the proposed CPU implementaebust characteristics. To cope with the generalized apert
tion of the RLOF achieves a frame rate of 44 fps by trackingroblem a strategy to adapt the region size was developed. Th
551 features, we provided in [24] a parallelized versionhef t effectiveness of our approach is shown under various sicenar

-20 -10 0 1 20 30
3
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Fig. 8. Evaluation of the Tracking Performance for the 'To¥ish’ and 'Table’ sequence with different compression sabé the MIT [25] dataset and salt
& pepper noise with a noise density 6£02. The region size of the KLT was varied forfhi X 7 to 17 x 17 which is the range of the window sizes for
RLOF. Exemplarily7 x 7,11 X 11 and17 X 17 are shown.

as motion boundaries, changing illuminations and appgarinumber 261743 (NoE VideoSense).

pixels all violating standard Lucas/Kanade assumptiansur

experiments, it could be shown that a robust estimator gives
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