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Abstract—The selection of regions or sets of points to track is
a key task in motion-based video analysis, which has significant
performance effects in terms of accuracy and computational
efficiency. Computational efficiency is an unavoidable require-
ment in video surveillance applications. Well established meth-
ods, e.g. Good Features to Track, select points to be tracked
based on appearance features such as cornerness and therefore
neglecting the motion exhibited by the selected points. In this
paper, we propose an interest point selection method that
takes into account the motion of previously tracked points in
order to constrain the number of point trajectories needed. By
defining pair-wise temporal affinities between trajectories and
representing them in a minimum spanning tree, we achieve a
very efficient clustering. The number of trajectories assigned
to each motion cluster is adapted by initializing and removing
tracked points by means of feed-back. Compared to the KLT
tracker, we save up to 65% of the points to track, therefore
gaining in efficiency while not scarifying accuracy.
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flow; RLOF

I. INTRODUCTION

Analyzing motion and moving objects in video data pro-

vides relevant information for computer vision and surveil-

lance systems. Optical flow is increasingly being used in

video surveillance systems, e.g., in order to distinguish

people by motion in crowds, for crowd analysis and activity

monitoring.

A common motion representation is provided by point

trajectories, which require a fast and accurate motion track-

ing for large sets of points. Most recent work [1], [2]

has been motivated by the huge improvements in dense

optical flow estimation [3]. A method dealing with dense

sets of trajectories is e.g. the Particle Video [4], which is

based on extracting point trajectories from a dense optical

flow method, but it is rather slow. Furthermore, parallel

computing has emerged as a key technique in order to

increase the performance of motion computation. Fast and

parallelized implementations [5], [6] enable the computation

of dense motion fields using the GPU. In [7] a large dis-

placement optical flow (LDOF) as introduced in [6] is used

to create dense point trajectories with a high performance.

Nevertheless, with a run-time of above 1000 ms, it is still

not suitable for surveillance applications.

Due to its high computational efficiency the Kanade Lucas

Tomasi feature tracker (KLT) [8] still remains as a widely

Figure 1. Process stages of the proposed approach. Motion clustering is
performed at the MST representation of the trajectory graph. A feed-back
loop enables to distribute tracks homogeneously to each moving objects.

accepted method utilized to compute sparse motion fields or

trajectories in video sequences [9], [10]. While most global

optical flow techniques, whose computational effort is tied

to the image size, outperform the KLT method in terms of

accuracy and density of the computed motion fields, the KLT

is faster for sparse motion fields due to the scalability of the

computational complexity regarding to the number of points

to be tracked. The KLT tracker employs the Good Features

to Track (GFT) method in order to select a set of points

to track and estimates their motion using the Lucas Kanade

method. Very fast implementations of the KLT tracker [8]

use parallelization [11], [5]. In [12] a robust variation of the

Lucas Kanade method is presented which is able to track up

to 10.000 points in real-time (>25fps).

The choice of the selected points to track is crucial for the

performance by using the KLT tracker. State-of-the-art KLT

trackers [8], [13] are still based on the GFT method as well

selecting points on image regions with high cornerness [14].

Cornerness is an important selection criterion in order to

avoid singularity problems of the Lucas Kanade method

regarding the aperture problem. But, as stated in [12],

corner regions are likely to lie on motion boundaries, thus

violating the local constant motion assumption. Moreover,

the extracted motion information should properly represent

the whole scene, i.e. each moving object should get assigned

enough trajectories to accurately describe its motion while

preserving large objects, e.g., the background, from con-

taining too many trajectories in order to avoid redundant

information and thus saving computational resources. This

is still not taken into account by the KLT tracker and in

particular by the GFT method.
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Figure 2. From top left to lower right: (a) Point trajectories, (b)
triangulated point trajectories, (c) MST, (d) motion segments, e) point
density and (f) mesh density map.

In this paper, we propose a method for selecting points

to track by adding the constraint that each moving ob-

ject should be represented by a given number of point

trajectories, depending on the application characteristics.

Therefore, we use a feed-back loop to adapt the number

of trajectories by initializing and removing them according

to specific properties of the motion segments. Fig. 1 and

Fig. 2 provide an overview and a graphical representation

of the proposed system, respectively. For the point tracking

(Fig. 2(a)) task we chose the robust local optical flow

(RLOF) as proposed in [12] due to its good accuracy

and run-time relation. Motion segmentation is performed

by trajectory pair-wise affinity clustering. Spatial affinity is

modeled by the triangulation of the trajectory endpoints. In

this way, temporal affinities are only computed for adjacent

trajectory endpoints. This leads to an undirected weighted

graph (Fig. 2(b)). Trajectory clustering is performed by using

the minimum spanning tree (MST) of this undirected graph

(Fig. 2(c)). By assuming that each motion cluster (Fig. 2(d))

represents a different moving object, a point density map (e)

and a mesh density map (f) containing the trajectory density,

will be computed for each motion segment. This process is

thoroughly described in Section 2. In combination with the

current point density, we initialize new trajectories at regions

with corner like textures and low point and mesh densities, in

order to obtain sparse point trajectories for big objects as the

background and dense point trajectories for small objects,

as we describe in Section 3. In Section 4 we present some

experimental results and compare our system to state-of-

the-art optical flow based trackers showing significant run-

time improvements at equivalent tracking accuracy. Section

5 concludes the paper.

II. TRAJECTORY AFFINITIES AND CLUSTERING

Given a set of asynchronous trajectories T i.e., with differ-

ent temporal elongations, for each frame t, we need a locally

adaptive interconnecting mechanism for their corresponding

trajectory points to separate the different motion entities.

We found the Delaunay triangulation [15] to be a powerful

and fast method. An undirected graph G(E, V ) is built from

the set of trajectory endpoints ẋ0, . . . ẋj ∈ Ṫ representing

the set of nodes V . We assign low weights w to pairs of

point trajectories that are linked through the set of edges E

and have similar motion. Since the discriminability among

tracks is increased with their length, only trajectories Ṫ ⊂ T

tracked for a minimum number of frames τ1 are selected to

build the graph. The triangulation indirectly models spatial

affinities and speeds-up computations but still enabling to

links of not directly connected tracks through a path in

the graph. Each edge is assigned to a weight representing

the local temporal dissimilarity between the corresponding

tracks. We choose a metric that compares the maximal

distance between two tracks. For TA and TB :

d(TA, TB) = max
TA

⋂

TB

||TA − TB || (1)

for the overlap between trajectory TA and TB . We use a fixed

standard exponential to turn the distances into weights.

w(TA, TB) = 1− e−(0.2·d(TA,TB))2 (2)

The more A and B belong to the same moving object the

more likely d(TA, TB) and the weight w tends to be small.

The motion clustering at the object level is performed

by separating the undirected weighted graph G of all valid

trajectories Ṫ into connected sub-graphs Ḡ ⊂ G, each

of which represents an individual moving object. This is

performed in an efficient way on the minimum spanning tree

(MST) [16] of the graph G. The tree in G is a connected

graph without circuits and a spanning tree of G is a tree

which contains all nodes of G. From a graph G it is possible

to build a set (forest) of spanning trees. The spanning tree

with the minimal sum of weights is called MST. The MST

is a configuration that satisfies the minimum principle [17].

Due to this principle, two clusters are linked up by a single

edge of the MST. Such edges are called inconsistent. In other

words, clustering is performed by finding inconsistent edges

of the MST and building sub-trees by removing them.

By following the depth neighborhood criterion as intro-

duced in [17], we find inconsistent edges ei as those edges,

whose weights wi are larger than the average weight of

nearby edges in the tree. Therefore, we consider for each

pair of nodes vs and vt, being vs the source and vt the

target of a given edge ei, a depth neighborhood of depth

δ. The depth neighborhood for each node is the set of

edges that belong to the path of depth δ with origin at that

given node, excluding the path through ei. Let µs and σs,

respectively, be the average weight and variance of the depth

neighborhood of vs. Similarly, let µt and σt be the average

weight and variance of the vt depth neighborhood. An edge

ei is considered to be inconsistent if one of the following



conditions holds:

wi > µs + c · σs (3)

wi > µt + c · σt (4)

wi > max(µs + c · σs, µt + c · σt) (5)

f <
wi

max(µs + c · σs, µt + c · σt)
(6)

,where c and f are constants. Inconsistent edges are used to

disjoint the tree into sub-trees.

III. POINT TRAJECTORY RESELECTION

The main contribution of this paper is the improvement

achieved by the initialization of trajectories. While current

techniques are still based on the cornerness of the images,

i.e., the texture appearance, in addition our approach is take

into account clustered motion information. Therefore, we set

the following conditions to each set of trajectories:

1) The number of trajectories for one motion cluster

should be limited.

2) Individual clusters should be constituted by a minimal

number of long-term trajectories.

3) The set of point trajectories corresponding to a cluster

should be uniformly distributed.

4) The trajectories should be initialized at corner-like

regions.

The probability pT (x) of initializing a new trajectory

is composed by two independent probabilities, namely, the

point density probability pṪ and the mesh density probability

pḠ.

pT (x) = pṪ (x) · pḠ(x) (7)

pṪ (x) refers to the spatial distribution of the trajectories,

which should be proportional to the minimal distance be-

tween x and each trajectory (as imposed by condition 3):

dṪ (x) = min
ẋj∈Ṫ

|x− ẋj |, (8)

where dṪ (x) denotes the point density map. Having a huge

number of trajectories, dṪ (x) can be efficiently computed

by using the distance transform of the ẋj point map. We

use the exponential function and a constant σd to turn the

distances into the point density probability:

pṪ (x) = 1− e
−

(

d
Ṫ

(x)

σd

)2

. (9)

To satisfy conditions (1) and (2) we integrate the motion

segmentation results, see Section II. The number of nodes

of the clustered sub-graph set Ḡ ⊂ G are projected by their

respective faces onto the mesh density map dḠ(x). The map

dḠ(x) is turned into a probability, setting the mesh density

constant σn by:

pḠ(x) = e
−

(

d
Ḡ

(x)

σn

)2

. (10)

Figure 3. Partition of execution time. Trajectory affinity is measured with
τ1 = 10 and trajectory could be removed with τ2 = 21 and the clustering
is performed with c = 4, f = 0.2 and δ = 3. To measure the mesh and
point density we apply σd = 10 and σn = 16.

We use the FAST feature detector to sample the set of

new trajectory candidates. The FAST [18] method is a

runtime efficient corner detector. Corners are assumed at

positions with not self-similar patches. This is measured by

considering a circle, where the intensity from the center of

the circle is compared with intensity values of each end of

a line across the circle diameter. Thus, a patch is not self

similar if pixels at the circle look different from the center

x. A new trajectory is initialized at x conditioned by pT (x)
as in Eq.( 7).

Under certain conditions, especially with static cameras,

trajectories could have a rather long live. Thus, we have to

remove trajectories to satisfy condition one. Therefore, we

define the probability pT−1(x) = 1 − pḠ(x) of removing

trajectories, which have a minimal size of τ2. The process

of initializing and rejecting trajectories enables our method

to maintain a nearly constant number of features for each

object depending on its size.

IV. EVALUATION

The proposed system has been implemented on a platform

consisting of an AMD Phenom II X4 960 running at 2.99

GHz and a Nvidia GTX 275 graphic device. The RLOF

is implemented on the CPU and on the GPU. The motion

segmentation and point selection algorithms are only imple-

mented on the CPU. Figure 3 shows the breakdown of the

proposed method. Most of the run-time (64%) is spent on

computing the point trajectories, 24% is spent on the motion

segmentation and 12% is used for other processes including

e.g. trajectory reselection.

A. Tracking

For the evaluation we use the MIT dataset introduced

in [19], which provides the ground truth optical flow for

sequences up to 75 images. We compare the proposed

motion oriented robust local optical flow tracker (MORLOF)

with the KLT (we used the CPU implementation provided

by the OpenCV 2.0 library), RLOF and LDOF [7] tracker.

Since RLOF does not include a feature selection method

we use the GFT method to initialize the RLOF tracker. The



camera (37 frames) fish (75 frames) hand (48 frames)

AED
Points Runtime per

AED
Points Runtime per

AED
Points Runtime per

tracked frame (ms) tracked frame (ms) tracked frame (ms)

LDOF 1.41 101662 64000 3.39 75907 320000 2.14 151018 146000
KLT 4.04 4040 1691 11.03 5201 2626 4.75 3496 1325

RLOF* 3.46 3952 1884 8.21 4823 3131 4.69 3531 1730
RLOF** 2.68 1335 353 8.06 846 157 10.01 87 77

MORLOF 2.60 1413 729 4.33 792 507 6.73 84 115

Table I
TRACKING ACCURACY OF THE LDOF, KLT, RLOF*, RLOF** AND MORLOF FOR THE MIT SEQUENCE. THE RLOF* AND RLOF** POINTS TO

TRACK ARE DETECTED BY GFT WITH VARYING PARAMETERS. TIME MEASURES ARE PERFORMED ON THE CPU. (LDOF IS AVAILABLE AT

HTTP://LMB.INFORMATIK.UNI-FREIBURG.DE/PEOPLE/BROX/ AND RLOF IS ABAILABLE AT

HTTP://WWW.NUE.TU-BERLIN.DE/MENUE/FORSCHUNG/PROJEKTE/RLOF/.)

RLOF tracker are evaluated at two operation points by sup-

pressing features with less texture information to illustrate

the influence of different numbers of features for GFT based

feature tracker. RLOF* defines the operation point with a

adequate number of features, that is approximately the same

as selected by the default KLT tracker. And RLOF** defines

the operation point with a very low number of features,

that is approximately the same as these extracted by the

MORLOF. This feature set contains only features with very

strong edges. Ground truth trajectories are obtained from the

ground truth optical flow. The tracking error is measured as

the average Euclidean distance (AED) between the trajec-

tory endpoints and the predicted positions according to the

ground truth as introduced in [7]. LDOF measurements are

taken from [7] and the false tracking detections of the KLT

and RLOF trackers are done regarding [12] with ǫd = 1.

The KLT has been configured to use Ω = 17 × 17 and

SSD = 100000 in order to avoid pre-rejection of tracked

points. The RLOF regions are set to Ωsmall = 7 × 7 and

Ωlarge = 17 × 17. The MORLOF is performed with the

mesh and point density variance σd = 10 and σn = 16.

The trajectory clustering is performed by c = 4, f = 0.2
concerning a neighbor depth δ = 3 for trajectories with

τ1 = 10 and the trajectory removal with constant τ2 = 21.

The evaluation has been performed with the three MIT

sequences containing more than 21 frames. To measure the

computational cost of the tracker we provide the number of

tracked points and the run-time at the last frame of each

sequence.

As Table I shows, the LDOF is outperforming the local

optical flow trackers in terms of accuracy. Nevertheless, the

CPU implementation of the LDOF is not practicable for

real-time applications. The run-time of the CPU MORLOF

implementation is clearly enhanced compared to the run-

time of the GFT-based trackers (KLT and RLOF*), with

an improved overall accuracy excluding the hand sequence.

Obviously, the AED is not necessarily related to the number

of points to track. With approximately the same number

of tracked points the MORLOF the accuracy could be

improved related to the RLOF**. The feature distributions

Figure 4. Top: (a) KLT tracking results for the MIT sequences. Middle:
(b) Tracking results by the RLOF**. Bottom: (c) Tracking results by
MORLOF. Blue rectangles indicate the trajectories endpoint and green
circles the corresponding ground truth. Corresponding pairs are connected
with light blue lines.

for the sequences are illustrated in Figure 4. The top and

middle row shows the behavior of the GFT method, that

was parametrised to compute a reduced number of points

to track. The trajectory distribution is relocated to highly

textured regions. The MORLOF incooperate the texture

information too, but by additionally considering the motion

clusters information the distribution of the points to track

is better balanced. E.g. the road area of sequence camera

is sufficient covered by MORLOF trajectories but barely by

RLOF** trajectories.

B. Trajectory distribution

To evaluate the proposed motion adaptive feature selection

method on a long term basis, we use a 640 × 480 traffic

scenes with about 500 images. These sequences are typical

video surveillance sequences with small moving objects.

The MORLOF tracker should also be able to select points

at significant regions as the moving cars and track them

efficiently. To measure the coverage of each object by

trajectories, we annotate the contour of each car using the



Figure 5. Top: (a) First frame and the annotated motion segmentation
of the frame 153 from a static camera. Bottom: (b) First frame and the
annotated motion segmentation of the frame 153 from a hand-held camera.

segmentation tool provided by Liu et al. [19]. Figure 5 shows

the first frame of the used sequences and the annotated frame

153. The top sequence was captured using a static camera

and the bottom sequence was captured using a moving hand-

held camera. This second scene was used in order to proof

the robustness of the proposed method with respect to global

motion.

The long term evaluation is performed between the

MORLOF and the KLT tracker. Table II shows the number

of features, i.e. trajectory endpoints, localized at each object

. An object id references to the Figures 5(a) and 5(b).

Trajectories lying at the background are denoted as BG. The

results show that the coverage of the small moving cars are

maintained. On average, the number of features per car is de-

creased slightly with respect to the KLT tracker. The number

of background trajectories could be decreased up to 65% in

both sequences. Figure 6 shows the change of the number of

trajectories over time, which is determined by the number

of trajectories lying at the background. The KLT tracker

initializes new trajectories until saturation. This is affected

by the camera noise that changes the GFT detections. The

MORLOF is initialized with a high number of trajectories by

the FAST detector. The rejection of background trajectories

starts at frame 22 (τ2 = 21). Followed by reinitializing some

of the removed tracks, the system is converging to a stable

number of tracks after a few frames.

The execution time of the MORLOF and KLT tracker is

shown in Figure 7. In Figure 7(a) the run-time reduction of

the CPU implementation is visible, obtaining an overall run-

time decrease from 775ms of the KLT tracker to 216ms of

the MORLOF for static sequences. Figure 7(b) relativists the

direct run-time benefit of saving number of features to track

for GPU implementations. Mainly due to the adaptive region

strategy of the RLOF, the MORLOF tracker is performing
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Figure 6. Top: (a) Change of the number of trajectories over time for
the static sequence (s) and the hand-held captured sequence (m) with CPU
implementations. Bottom: (b) Change of the number of trajectories over
time with the GPU implementations.

with a lower run-time than the KLT tracker. Beside using a

tracker, whose output is a reduced set of trajectories, could

be further improve the run-time performance of advanced

post-processing techniques, e.g., advanced clustering [2],

[1].

V. CONCLUSIONS

In this paper we presented an improved tracking method

for long term video analysis based on the RLOF method. The

proposed tracker takes the motion of the tracked points into

account in order to constrain the number of point trajectories

needed. Therefore, we use motion cluster oriented feed-back

in order to adapt the detector response and remove existing

trajectories according to the extracted motion segments.

Our experiments with the MIT dataset show that tracking

with MORLOF provides an improved accuracy and run-

time relation concerning to the KLT and RLOF* tracker. In

further experiments we evaluate the proposed method with

a traffic sequence about 500 images, where we could show

that our method is able reduce the number of trajectories up

to 35% with similar trajectory coverage of the foreground

objects.
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