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Abstract

In this paper we present a visual person tracking-by-
detection system based on on-line-learned instance-specific
information along with the kinematic relation of measure-
ments provided by a generic person-category detector. The
proposed system is able to initialize tracks on individ-
ual persons and start learning their appearance even in
crowded situations and does not require that a person en-
ters the scene separately. For that purpose we integrate
the process of learning instance-specific models into a stan-
dard MHT-framework. The capability of the system to elimi-
nate detections-to-object association ambiguities occurring
from missed detections or false ones is demonstrated by ex-
periments for counting and tracking applications using very
long video sequences on challenging outdoor scenarios.

1. Introduction
Tracking of multiple persons in a video sequence

recorded by a static camera is a important low-level com-

puter vision task and essential for automatic scene analysis.

The trajectories gathered by this analysis can be utilized for

economical purposes and security applications such as de-

tecting abnormal behaviour, counting people entering pub-

lic transports or assessing the influence of advertisement.

In general, the operation of multi-object-tracking-by-

detection systems can be divided into two main parts: at

first, a system searches in each new video frame possible

object candidates by means of a beforehand learned generic

model of the category of interest. Afterwards the measure-

ments of the detector from multiple frames are combined

to object trajectories by filtering spurious and missing mea-

surements by a tracking module.

The development of generic models for the detection of

the category “persons” is a challenging task, since different

clothing and articulation of walking humans and addition-

ally arbitrary lightning conditions lead to a variety of color

and texture of their representations in an image. This prob-

(a) (b)

Figure 1. Proposed system at work: (a): Circles represent the

measurements of the generic person-category. By tracking mul-

tiple hypotheses of measurement-to-track associations new tracks

are initialized. If a track is assessed as reliable instance-specific

appearance models are built. (b): The appearance similarity for

every learned model is evaluated (illustrated here in different col-

ors) and the result is fed back to the MHT-framework aiming at

improving the tracking quality.

lem of large intra class variation has been tackled in recent

years and several reliable gradient based methods for the de-

tection of separated persons in still images has been devel-

oped [6, 12, 16]. But when dealing with crowded scenarios,

and therefore with a high degree of inter-object-occlusion,

ambiguous gradient information may irritate detectors de-

signed for the whole body. Wu and Nevatia tackled this

problem by designing human part detectors based on gra-

dient information and combining the detections in a joined

likelihood model [17]. Pätzold et al. proposed to search

only for the head-shoulder-region of a person and reject

false positives by additional analysis of the motion of the

region [13].

Nevertheless, the detection rate, the false positive rate

and the measurement accuracy of generic person-category

detectors is not sufficient to infer the position of all exis-

tent objects in a single image directly. Therefore, applying

a tracking filter to the noisy detector results is essential to

infer reliably the number of objects and their positions.
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In 1960 Kálmán proposed to use a recursive linear fil-

ter in order to obtain the statistically optimal state estimate

for one object from a sequence of discrete, noisy data [10].

But when multiple objects move close to each other, there

are more than one possible assignment of the set of avail-

able measurements to the set of objects. Assuming that

at most one measurement can be assigned to one object,

a solution for finding the global nearest neighbor (GNN)

can be computed by linear programming. After complet-

ing the data association, all emerged tracks are updated by

Kalman filtering with the associated measurement. Since

the GNN-approach only takes the most likely association

for the current frame into account, closely spaced targets

and false measurements can lead to consecutive wrong as-

sociations and therefore, to track loss. This effect is al-

leviated by the Joint-Probabilistic-Data-Association-Filter

(JPDAF). The JPDAF updates all tracks with all measure-

ments of one time-step under consideration of the measure-

ment origin uncertainty [1]. But JPDAF requires to know

the number of objects and provides no solution to track

initialization. The global optimal solution for multi object

tracking should be found by propagating every possible data

association hypothesis to the next time steps. Reid proposes

an algorithm to build all possible hypotheses and provides

a probabilistic formula in order to evaluate their probabil-

ity [15]. The system proposed in this paper is based on

a MHT-data-association system, because of its capability

to detect and track objects even in crowded environments

and under presence of clutter in time-critical applications

by considering only information from previous frames.

Contrary to the before mentioned recursive approaches,

there were published various methods which find an optimal

solution for the data association problem by taking all mea-

surements of all time-steps jointly into account [9, 18, 19].

Real-time performance of these methods can be accom-

plished by analyzing the scene using a sliding window tech-

nique [14].

In complex situations with partial or full object occlu-

sion or highly maneuvering objects that do not obey the lin-

ear motion model the inherent state information (estimated

position, velocity and their covariances) may not be suffi-

cient to keep track. Wu and Nevatia propose to use the

last available state information (color histogram, dynamic

model and detector confidence) and initialize a mean-shift

tracking during occlusion incidents [17]. More accurate

instance-specific models can be build by integrating addi-

tional knowledge about the appearance of background or

neighboring persons. By means of machine learning tech-

niques it is possible to extract only the discriminative infor-

mation [4, 11]. We also use these techniques to improve the

tracking performance in challenging situations.

The main contributions of this paper is to describe how

to integrate and manage person-specific information within

the standard MHT-framework. By propagating multiple

data association hypotheses MHT is able to initialize ob-

ject trajectories even when people walk in crowded areas.

These initial object trajectories are then used to provide reli-

able training data with correct labels to the instance-specific

model learning algorithm. The benefit of the appearance

information for tracking is twofold: we propose to incor-

porate the instance-specific information into the posterior

probability computation of each hypothesis. Furthermore,

we present a method to guide the tracker based on specific

appearance information in the case of missed measurements

from the generic person-category detector.

We structured the paper as follows: In the next sec-

tion the standard MHT-theory and our tree-based imple-

mentation is introduced. In section three the integration of

the instance-specific model into the MHT-framework is de-

scribed. Section four shows experimental results and sec-

tion five concludes the paper.

2. Standard MHT-Implementation
The proposed system is based on the standard Multi-

Hypothesis-Tracking approach by Reid [15]. He proposes

to propagate multiple hypotheses for the data association

task from one time-step to another. For this purpose the

MHT-algorithm creates a set of new hypotheses containing

all possible combinations between each of the tracks and the

set of measurements for each particular prior hypothesis. In

order to evaluate the hypotheses Reid recursively defines a

posterior probability of a hypothesis 𝑖 at time 𝑘 given a set

of new measurements as

𝑃 𝑘
𝑖 =

1

𝑐
𝑃𝑁𝐷𝑇

𝐷 (1− 𝑃𝐷)(𝑁𝑇𝐺𝑇−𝑁𝐷𝑇 )𝛽𝑁𝐹𝑇

𝐹𝑇 𝛽𝑁𝑁𝑇

𝑁𝑇

×
[
𝑁𝐷𝑇∏
𝑚=1

𝒩 (𝑍𝑚 −𝐻�̂�𝑗 , 𝑃𝑗)

]
𝑃 𝑘−1
𝑖 , (1)

where 𝑃 𝑘−1
𝑖 is the prior hypothesis probability, 𝑃𝐷 is the

detection rate, 𝛽𝑁𝑇 and 𝛽𝐹𝑇 are the new target and false

target density, 𝑁𝑇𝐺𝑇 ,𝑁𝐷𝑇 , 𝑁𝐹𝑇 and 𝑁𝑁𝑇 represent cur-

rent hypothesis configuration parameters and 𝑐 is a normal-

ization constant. The likelihood to assign a measurement

𝑚 to track 𝑗 is modeled by the normal distribution 𝒩 of

its Kalman filter with its state �̂�𝑗 and covariance 𝑃𝑗 . Thus,

the measurements are assumed to be indistinguishable and

the likelihood of assignment to a track only depends on

their position. In order to prevent the set of hypotheses

𝑌 from growing exponentially over time, the unlikely ones

are pruned at every time-step to a fixed maximal cardinality

𝜅𝑚𝑎𝑥.

The storage of the previous tracking states of all cur-

rent hypotheses is mandatory for global computation of the

tracker performance, graphic data output and all extensions

to the algorithm that require data from the past time-steps.
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Figure 2. Example for tree based track management: Two

tracks 𝑃1 and 𝑃2 with their track trees and the measurements

𝑀1, 𝑀2 and 𝑀3 are forming several new hypotheses at time-

step 𝑡. The track tree nodes (here illustrated in different colors)

store all information and the hypotheses are only pointing to the

respective nodes.

In order to achieve an efficient storage of the state infor-

mation, we implemented a tree-based track management as

proposed in [3] and depicted in figure 2. Each track state

for a time-step is stored in a particular node. The nodes of

one track are linked over time resulting in an incrementa-

tion of the tree depth at every upcoming time-steps. Since

at every time-step each single track spawns multiple new

possible tracks (which are hold in the different hypothesis),

the linked nodes represent a tree, the so called track tree and

a track with its history is represented by a tree branch from

a particular leaf node to the root node. All active tracks with

a common starting measurement reference into the leafs of

one track tree. By managing the data in this way the mem-

ory resources are used efficiently. Furthermore, by counting

the references from the hypothesis tracks into the tree nodes

it is possible to automatically delete nodes, on condition that

there is no reference to this node anymore.

The generic person-category measurements used by our

basic MHT-implementation are generated by a detector

based on histograms of oriented gradients (HoG) [6]. We

trained only the upper body region of a human, since that is

usually the only body part a camera with common tilt angle

is able to observe. In the next sections we give a descrip-

tion how instance-specific information is integrated into this

MHT-framework and how it improves the tracking perfor-

mance.

3. Integration of the Instance-Specific Model

3.1. Instance-specific Model Initialization

Our system initializes new tracks based on the de-

scribed standard MHT-framework using measurements of

the generic person-category detector. In order to benefit

from instance-specific information we need to pick at ev-

ery time-step suitable tracks from the set of hypotheses for

which we learn an appearance model. It is obvious that

learning a model for every track in each hypothesis is com-

putational intractable and also an unprofitable process, be-

cause there exist plenty of duplicate or at least similar tracks

in the set of hypotheses and we ideally should only learn a

model per person. Therefore, we propose a method to iden-

tify tracks to learn based on the previously described tree-

based track management. First, we merge duplicate tracks

in the track-trees. Afterwards the number of nodes to train a

model for is further reduced by collecting a all nodes which

exist a defined number of time-steps back in history. Fi-

nally, we apply a filter to obtain a small set of tree-nodes,

the so called model nodes, for which a specific model is

trained.

We reduce the number of nodes pointing to an individual

person by merging tracks referencing to different track tree

nodes, but representing the same person. For this purpose

we compare the states of two tracks 𝑗 and 𝑘 and merge them

if the Mahalanobis distance

(�̂�𝑘 − �̂�𝑗)
′[𝑃𝑗 ]

−1(�̂�𝑘 − �̂�𝑗) ≤ 𝜎, (2)

is below a threshold 𝜎. This value has to be set, maintaining

the distinctiveness of different hypotheses, while different

track trees pointing to the same person are merged.

All current track information is obtained by collecting

the leaf nodes of all track trees. This set of nodes is reduced

by ascending the tree of each node by 𝑛𝐿𝐵 nodes (time-

steps of looking back). This way many nodes are replaced

by a common parent node, which had only minor modifi-

cations in the last 𝑛𝐿𝐵 time-steps. We can count for each

of these parent nodes the number of tracks 𝜖 that share this

node. This number represents directly the number of hy-

potheses that use this node, since every track that shares

this node must be in different hypotheses according to the

assumption that an object originates at most one measure-

ment per time step. We only take these nodes as model

nodes that are conform with the following constraint

𝜖 >
𝜅𝑚𝑎𝑥

2
. (3)

This method ensures that recently created targets has

to be established for several time steps before a model is

built. And by only considering information from estab-

lished tracks the labeling of this information is reliable,

which is a major requirement for the training of instance-

specific models using supervised learning methods.

3.2. Boosting the Instance-specific Model

The instance-specific model should not only model a

specific person but also discriminate the person from sur-

rounding persons and background as much as possible,

since it is used for associating the detections to the tracks

later on. Therefore, we collect the training data and label

them similar to [4, 11]. We use the last measurements of a

track as positive labeled input data. They are already stored

in the respective track tree nodes and can be collected by as-

cending beginning at the model node to their parent nodes

recursively. Furthermore, we take other neighboring tracks
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Figure 3. Gathering of labeled data for training the instance-
specific model: Detector measurements of the particular person

serve as positive labeled data samples (displayed as green patch).

Background patches and patches of surrounding persons are col-

lected and labeled negative (depicted as red patches).

and background patches of the current time-step as negative

labeled input data as depicted in figure 3. For every data

location a set of haar-like features and a normalized RGB-

histogram is computed. We apply Adaptive Boosting [8]

to the gathered labeled training data per model node. We

use a set of decision stumps as feature pool h by testing

each bin value of the histogram and the haar-like feature

values with specific thresholds. After learning the instance-

specific model 𝑐 is a linear combination of decision stumps

which can be evaluated at position 𝑥 as follows

𝑐(𝑥) =
𝑇∑

𝑡=1

𝛼𝑡ℎ𝑡(𝑥), ℎ𝑡 ∈ h. (4)

Finally, the created model is stored in the model node, so

that it is accessible by all child nodes. In figure 2 the

instance-specific models 𝑐1 and 𝑐2 for 𝑛𝐿𝐵 = 2 are de-

picted. These models are used by all corresponding child

nodes.

3.3. Data Association aided by Instance-Specific-
Model

In Reid’s standard MHT-approach the likelihood of the

assignment of a measurement to a track depends only on the

kinematics of the detector measurements, as seen in eq. 1.

But the availability of instance-specific models enables to

augment the likelihood with a term for object appearance

similarity. The instance-specific model 𝑐𝑗 for track 𝑗 which

can be found by ascending its track tree is evaluated at each

measurement 𝑧𝑚 and the posterior probability of a hypoth-

esis is now computed as

𝑃 𝑘
𝑖 =

1

𝑐
𝑃𝑁𝐷𝑇

𝐷 (1− 𝑃𝐷)(𝑁𝑇𝐺𝑇−𝑁𝐷𝑇 )𝛽𝑁𝐹𝑇

𝐹𝑇 𝛽𝑁𝑁𝑇

𝑁𝑇

×
[
𝑁𝐷𝑇∏
𝑚=1

𝜌𝒩 (𝑧𝑚 −𝐻𝑥𝑗 , 𝑃𝑗) + (1− 𝜌)
𝑐𝑗(𝑧𝑚)

𝜏𝑚𝑎𝑥

]

×𝑃 𝑘−1
𝑖 , (5)

where 𝜏𝑚𝑎𝑥 is a normalization constant and 𝜌 enables to

control the influence of the kinematics and the instance-

specific model.

3.4. Unassigned Track Guiding by PDA-Filtering

Due to object occlusions or background clutter the de-

tector may miss some detections of a track. We propose

to guide the tracker in these cases by using the instance-

specific model knowledge as additional sensor input.

In order to use the instance-specific information the

models need to be evaluated at each new frame. For that

purpose we take all tracks of the most probable hypothesis

and search for model nodes by ascending their track trees.

Since one particular model 𝑐𝑗 provides information to mul-

tiple tracks, an appropriate evaluation area has to be defined,

so that the costly evaluation is only performed once. There-

fore, we traverse the tree beginning from the model node to

all leaf nodes and span a minimal bounding box Ω which

includes all leaf positions. Afterwards, a probability map

𝑃𝑐𝑗 is build by evaluating the model at every pixel 𝑥 within

this area

𝑃𝑐𝑗 = 𝑐𝑗(𝑥) : ∀𝑥 ∈ Ω. (6)

The probability maps for multiple persons are depicted

color-coded in figure 1(b). Potential object positions 𝑍𝑗 =
{𝑧𝑗1, 𝑧𝑗2, ⋅ ⋅ ⋅ , 𝑧𝑗𝑘} for a model 𝑐𝑗 are computed by seek-

ing the modes of the map 𝑃𝑐𝑗 by applying Non-Maxima-

Suppression and Mean-shift [5].

The set 𝑍𝑗 is considered as measurements for each unas-

signed Kalman filter which uses the model 𝑐𝑗 . We propose

to use PDAF [1] to cope with measurement origin uncer-

tainty and update the Kalman filter accordingly. We com-

pute the association probability 𝛽𝑗
𝑖 for the potential position

𝑧𝑗𝑖 of instance-specific model 𝑐𝑗 as described in [1], where

the likelihood ratio ℒ𝑗
𝑖 that 𝑧𝑗𝑖 arises from the object rather

than from clutter is computed by

ℒ𝑖 =
𝒩 (𝑧𝑗𝑖 −𝐻�̂�, 𝑃 (𝑘∣𝑘 − 1))𝑃𝐷

𝑐𝑗(𝑧
𝑗
𝑖 )

𝜏𝑚𝑎𝑥

𝜆
(7)

considering the detection rate 𝑃𝐷, the Poison clutter model

density 𝜆 and also the normalized confidence
𝑐𝑗(𝑧

𝑗
𝑖 )

𝜏𝑚𝑎𝑥
of the

instance-specific model. The state estimate of the Kalman

filter is then updated as

�̂�(𝑘∣𝑘) = �̂�(𝑘∣𝑘−1)+𝑊 (𝑘)
𝑚∑
𝑖=1

𝛽𝑗
𝑖 (𝑘)(𝑧

𝑗
𝑖 −𝐻�̂�(𝑘∣𝑘 − 1)),

(8)

where 𝑊 (𝑘) denotes the Kalman gain. The updated covari-

ance is computed as

𝑃 (𝑘∣𝑘) = 𝛽𝑗
0𝑃 (𝑘∣𝑘 − 1) + (1− 𝛽𝑗

0)𝑃
𝑐(𝑘∣𝑘) + 𝑃 (𝑘), (9)
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where 𝑃 𝑐(𝑘∣𝑘) is the standard Kalman error covariance and

𝑃 (𝑘) reflects the measurement origin uncertainty and is

computed according to [1].

Finally, this additional information is also integrated into

the posterior probability of hypothesis within the MHT-

framework similar to a Sensor Type 2 as explained in detail

in [15].

4. Experimental Results
In this section we present the results of the evaluation

of our system applied to long-term sequences. We im-

plemented the whole system including HoG-detector (the

same as in [13]) and MHT-framework with instance-specific

model generator in C++. It processes one video frame on a

Intel Duo Core CPU (E8400) in 0.3 to 4 frames per sec-

ond depending on the number of people in the scene. The

parameters 𝜎, 𝜏𝑚𝑎𝑥 and 𝜌 of our system are set experimen-

tally, but fixed for all sequences.

We use two video sequences recorded at our campus by

a camera which was observing a courtyard of circa 5 meters

width and 30 meters length which is highly frequented (see

Figure 1(a)). In the first sequence ’Sparse Crowd’ sepa-

rated persons as well as small groups of maximal five people

are passing the courtyard in changing lightning conditions.

The second sequence ’Dense Crowd’ shows a higher crowd

density with up to 18 persons passing through the scene to-

gether. Additionally, we evaluated the performance of the

system with the sequence ’S1 L1 13-57’ of the public avail-

able PETS dataset [7].

One of our main applications of the system is the es-

timation of the number of people passing the scene. For

that purpose we defined a fictive line and annotated each

person crossing it and compared this data to the output of

the proposed method and the standard MHT. The proposed

method is able to count reliably the number of persons in a

video stream as illustrated in figure 4. The tracking fails in

few cases caused by permanent absence of detections. The

proposed method clearly outperforms the standard MHT,

which uses the same measurements provided by the person

detector. This can be explained by the capability of our sys-

tem to keep track of a person even if it is not detected for

a longer interval. Also at the PETS-sequence, the proposed

system outperforms the standard MHT-system. But, due to

the lack of a sophisticated motion analysis (as applied in the

approach of [13]) it misses some heavily occluded persons.

In order to evaluate the tracking performance in more

detail we annotated each person trajectory of the most chal-

lenging part of the ’dense crowd’-sequence containing high

crowd density and computed the CLEAR MOT metrics as

presented in [2]. The Multiple Object Tracking Accu-

racy (MOTA) provides a measure for the object configu-

ration errors made by the tracker (false positives, misses,
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Figure 4. Number of persons counted by the proposed system

on our dataset and sequence ’S1 L1-Time 13-57’ from the pub-

lic available PETS dataset.

mismatches). The precision of the tracker position esti-

mates is measured by the Multiple Object Tracking Pre-

cision (MOTP), which is defined as the average total po-

sition error between annotated and tracked positions that

are considered as configuration matches during the evalu-

ation process. In order to illustrate the characteristics of the

evaluated methods in detail both measures are computed for

batches of 50 frames.

The first plot of figure 5 shows that after the entering

of a large group of people at frame 3300 the MOTA of the

standard MHT method decreases, while the proposed sys-

tem’s MOTA is still high. The standard MHT loses track of

persons with very infrequent detector responses, while the

proposed method is able to continue the tracking of these

persons, as it incorporates the specific appearance informa-

tion. But the more inaccurate position estimation of these

objects causes a higher MOTP value for this situation com-

pared to the standard MHT, as illustrated in the second plot

of figure 5. Furthermore, a higher MOTA for the proposed

method is observable for the entire sequence. This can be

explained by a better handling of re-identification situations

caused by occlusions and the lower probability of assigning

false positive detections to existing tracks.
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Figure 5. Evaluation of tracking performance for sequence ’Dense-

Crowd’ using the MOTA and MOTP measures.

5. Conclusions

We presented a system for tracking multiple person in

an environment with high crowd density. Due to the use

of a multi hypothesis tracker the system does not require

separated persons in order to initialize new tracks. We pre-

sented a method to assess the confidence of the existence

of a track and proposed to train instance-specific models at

the moment when tracks become reliable. The trained mod-

els are evaluated efficiently and the data obtained thereby

is integrated into the MHT-framework and thus, supports

the tracking task. We showed in experiments that our sys-

tem performs significantly better than the standard MTH-

approach.
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