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Abstract—The availability of dense motion information in
computer vision domain allows for the effective application
of Lagrangian techniques that have their origin in fluid flow
analysis and dynamical systems theory. A well established
technique that has been proven to be useful in image- based
crowd analysis are Finite Time Lyapunov Exponents (FTLE).
Based on this, we present a method to detect people carrying
object and describe a methodology how to apply established
flow field methods onto the problem of describing individuals.
Further, we reinterpret Lagrangian features in relation to the
underlying motion process and show their applicability towards
the appearance modeling of pedestrians. This definition allows
to increase performance of state-of-the-art methods and is
shown to be robust under varying parameter settings and
different optical flow extraction approaches.

Keywords-people carrying objects; motion descriptor; la-
grangian dynamics; optical flow; FTLE; HOG;

I. INTRODUCTION

Several approaches have been made to detect people
carrying objects. In the paper we will denote the carried
object or a classified person that is carrying an object as
PCO. The majority of these methods are based on a spatio-
temporal analysis of pedestrian silhouettes. Therefore the
silhouettes have to be collected over a specified amount of
time, through which these methods are dependent on the
tracking quality.

Haritaoglu et al. [1] proposed the method Backpack,
where they make the assumption that the silhouette of a
person is symmetrical when the person is not carrying
any objects. To distinguish parts representing limbs from
parts representing PCO’s a periodicity analysis of the non-
symmetric parts is applied. An established spatio-temporal
appearance model is the temporal template [2]. A temporal
template is computed by accumulating the silhouette of a
tracked person that is then extracted from a foreground
segmentation. Tao et al. combine the temporal template
with a Gabor based feature space [3] and Damen&Hogg [4]
achieved convincing results by matching generated temporal
templates of generic people walking on a treadmill with
the temporal templates of the PCO candidates. In [5] the
foreground segmentation is replaced by motion information.
A statistical appearance model of the optical flow (GMMM)
was applied to generate a mean template of all pedestrians

observed in a video sequence. A PCO was detected as an
outlier that does not fit to the template. Temporal templates
and GMMM’s are sensitive to tracking failures and thus an
additional alignment must be applied. Therefore in [1], [4]
only pedestrians that do not occlude each other are analysed
and in [5] annotated tracks are used.

In contrast, Vanacloig et al. [6] proposed a blob based
classification method that does not use temporal information.
To detect the PCO’s a blob is divided into a set of subregions.
A feature set is generated by accumulating the foreground
pixels of each subregion and used to apply an k-nn classifier.
By ignoring the temporal behavior of the pedestrians the
feature extraction of this method is not critical to the
tracking precision. In the following we will demonstrate
the suitability of time-dependent vector field analysis for
the task of detecting people carrying objects. In the area of
flow field analysis particle-based or Lagrangian approaches,
that have there origins in dynamical systems theory, have
been effectively applied to describe features in atmospheric
phenomena and optical measurement of unsteady physical
flow phenomena [7]. Besides, Lagrangian methods have also
been successfully used by Ali and Shah [8] to analyze
and segment crowd movement in video sequences. More
recently, Mehran et al. performed a comparison on particle
trajectory descriptions by means of stream lines, path lines,
and streak lines for the analysis of crowded scenes [9].

In this work we will present our results on applying
the Lagrangian Framework that was proposed in [10] and
extending Lagrangian concepts towards detecting individ-
ual people carrying objects in video sequences. We will
use forward- and backward Lagrangian Coherent Structures
(LCS) described by the Finite Time Lyapunov Exponents
(FTLE) field as integrated spatio-temporal feature space to
analyze pedestrian motion behavior. We will present a pedes-
trian appearance model using the benefits of Lagrangian
descriptors for video surveillance that enables temporal
appearance modeling without explicit tracking. As with
Vanacloig et al. our method is based on detection and offers
the advantage of automatically incorporating information
across a variable number of time steps into one FTLE field
based on the choice of parameter τ as will be outlined in
Section III.
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Figure 1. Conceptual representation of Lagrangian methodology in image sequence: Starting from an image sequence shown in (a) we derive a space-time
domain description using the optical flow field of every time step (b). Within this domain we can integrate particle trajectories in forward and backward
direction (c) over an interval τ which ideally results in a closed region for a closed moving object.

II. SYSTEM OVERVIEW

The PCO detection method that is based on time-
dependent vector field analysis is integrated into a frame-
work that starts by detecting pedestrians from a sequence
of video frames. Therefore we apply a combination of the
well-known Histogram of Gradient (HOG) descriptor and a
linear SVM as proposed by Dalal&Triggs [11]. Throughout
our studies stable results where achieved with the default
parameters: a window size of 64 × 128, a block size of
16×16, a block stride and cell size of 8×8 and 9 histogram
bins. The application is applied to the Pets2006 dataset that
was also used by Damen&Hogg. We trained the classifier
with pedestrian samples annotated from the Pets2006 se-
quence 2 recorded by camera 3. In order to reduce the
search space and thus the computational complexity of the
classification step, we integrate two post processing steps.
At first a foreground blob detection is applied based on
the Heras&Sikora [12] foreground segmentation method in
combination with a connected component analysis. In a
thinly populated sequence each blob detection would be
associated with a person detection but Pets2006 contains
pedestrian groups that shows the HOG detector has to be
applied to each foreground blob. Secondly we use the HOG
detector in a calibrated environment to deal with projective
distortion. The scale of the HOG descriptor is computed
directly from the calibration, while assuming a pedestrian is
1.8m. Different HOG scales are implemented by resizing the
respective image content. For each bounding box we apply
the spatio-temporal analysis. Therefore the optical flow of
the integration interval τ has to be computed and stacked
to a 3 dimensional tensor. Thus the sequence of optical
flow frames is transferred into the space-time domain, which
allows us to estimate the particle trajectories, flow map and
finally the FTLE field of each pedestrian as described in the
next Section. Finally, for each pedestrian we introduce the
HOG-FTLE descriptor in combination with a linear SVM
classifier to label PCO’s.

III. LAGRANGIAN FEATURES AND FINITE TIME

LYAPUNOV EXPONENTS (FTLE)

In order to define a consistent theoretical methodology to
work on time-dependent optical flow data, we treat the series

of such fields as time-dependent vector field. For this, we lift
the fields into a higher dimension by interpreting the time as
an additional axis, where we will denote this as space-time
domain. In the setting of video analysis, path lines directly
describe the evolution of pixels within the associated image
data. Hence, one pixel can be reinterpreted as an particle
carrying information throughout the image sequence. For-
mally, this can be described as follows: Given a vector field
v(x, t), at every specified space-time point (x0, t0) ∈ D we
can start a stream line or a path line in space-time domain.
This can be formulated as an autonomous system:

d

dt

(
x

t

)
=

(
v(x(t), t)

1

)
,

(
x

t

)
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(
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)

Path lines of the original vector field v in ordinary space
now appear as stream lines of the vector field.

p(x, t) =

(
v(x, t)

1

)
(1)

in space-time. Now finding correspondences and motion
characteristics within a motion flow field sequence can be
described by considering p. This concept is compatible with
any optical flow field methodology that delivers a vector field
for every time step. Note that the quality of FTLE features
still depends on the accuracy of the underlying flow fields.

To analyze unsteady flow properties in a feature-oriented
manner there has been introduced the notion of Lagrangian
Coherent Structures (LCS). LCS directly describes trans-
port features of particles moving within the flow. A gen-
eral overview about recent Lagrangian methods for time-
dependent flow analysis is presented by Pobitzer et al. [13].
In video analysis this corresponds to the notion of an edge
of a closed moving object within the image. The choice
of the time interval parameter τ is a crucial aspect and is
closely associated with the temporal scale of features we
are interested in. The most prominent techniques to extract
LCS are Finte Time Lypunov Exponents (FTLE) presented
by Haller et al. [14], while the detailed correspondence has
been clarified in [15]. The numerical evaluation of FTLE
based on the flow map results in a scalar field that describes
the rate of separation within the flow over the considered
finite time interval. FTLE has already been proven useful
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to analyze flows containing divergent flow behavior from
image data [8], [16].

Formally we define the flow map φτ (x, t) = φ(x, t, τ) of
v as the location of a particle seeded at (x, t) after a path
line integration of v over a time interval τ . Let

∇(x, t, τ) =
dφ(x, t, τ)

dx

denote the spatial gradient of the flow map φ and define
values

μi = ln
√

λi(∇T∇) (2)

where ∇T is the transposed of ∇ and λi(∇
T∇) denotes

the i-th eigenvalue of the symmetric matrix ∇T∇. Then the
FTLE value at (x, t) for integration time τ is obtained as

FTLE(x, t, τ) =
1

τ
max{μ1, μ2} . (3)

LCS are now in close relation to height ridges in the
resulting FTLE scalar field [15]. Note that the ridge extrac-
tion procedure usually requires concise parameter treatment
in order to obtain qualitative results. This is discussed in
further detail by Eberly et al. [17]. In general FTLE can
be computed in forward and backward direction resulting
in the description of FTLE+ and FTLE- as described by
Garth et al. [18]. Following the LCS description, features in
the forward FTLE field describe regions of repelling LCS,
while features in the backward FTLE describe attracting
LCS structures over the considered time scope. Intersections
of FTLE+ and FTLE- ridge structures segment regions of
coherent movement and group invariant moving areas within
the field. Using this notion, ridges can be reinterpreted
as motion boundaries defined over a finite time scope a
correspond to coherent movement with respect to a certain
image region. The method parameter τ determines the length
and complexity of those ridge structures. This is illustrated
in Figure 2 for two practical examples using three different
approaches to obtain the underlying optical flow fields.

IV. FINITE TIME LYAPUNOV EXPONENTS DESCRIPTOR

As assumed in the previous work of Damen&Hogg [4]
and Senst et al. [5] a person that is carrying an object
could be detected by its changing motion boundaries. These
changes could be e.g. located at different outer motion
boundary, the silhouette or different inner motion boundaries
through the occlusion of a case. As described in Section III
the FTLE field is an excellent tool to model these motion
boundaries. The integration interval τ is a significant param-
eter as it should be aligned to the duration of the observed
event. In this case an event is described by the limb motion
of the observed pedestrian. Figure 2 illustrates different inner
motion boundaries of a FTLE field that is computed by
different integration intervals for a PCO and none PCO.

Commonly, features in the FTLE field are explicitly ex-
tracted in terms of height ridges as mentioned in Section III.

As a drawback is that, this requires the introduction of
an additional ridge extraction procedure, which tend to
be sensitive to noise in the underlying field [17]. In our
approach we avoid the direct use of ridge structures by
incorporating the FTLE field into the well-known HOG
descriptor. The HOG descriptor partition a detector window
into a dense grid of cells, with each cell containing a local
histogram over orientation bins. We modify the HOG such
that the FTLE field of the forward (FTLE+) and backward
(FTLE-) integration is calculated at each pixel and converted
to an angle, voting into the corresponding orientation bin
with a vote weighted by the overall FTLE magnitude.

V. FINITE TIME LYAPUNOV EXPONENTS CLASSIFIER

Damen&Hogg presented in [4] ground truth data for the
Pets2006 sequences of camera 3 for their PCO method.
This data contains bounding boxes to describe the locations
and sizes of the carried object of pedestrian, where only
pedestrian that do not occluding each other are selected. We
extend the ground truth data by the remaining pedestrian
and label each pedestrian within a bounding box. We also
label all new ground truth PCO’s with a 1 and the original,
previously annotated by Damen&Hogg with a 4. The PCO
classification is done in a supervised manner by a linear
SVM. We assume that the person detection is not perfect.
For each sequence the HOG person detection is applied.
Each detection is associated with the nearest ground truth
bounding box of a given gating range. The gating range is set
to 1/8 of the HOG window width and to 1/16 of the HOG
window height. The HOG window is also adapted to the
perspective distortion by using the calibration of the scene.
If a detection is successfully associated with a ground truth
annotation, it inherit the label of the respective ground truth,
else it is labeled as negative sample.

VI. EXPERIMENTS

Using the concepts described in the previous Sections, we
avoided explicit ridge extraction, while remain two crucial
aspects: the choice of the FTLE parameter τ and suitability
of the Lagrangian approach towards different optical flow
field methodologies. Thus we split our experiments in two
parts: First, we want to evaluate the influence of the path
line integration interval τ on the classification result. The
underlying motivation for these experiments is to reduce the
number of required frames. Second, we want to evaluate
the robustness of the proposed method related to motion
estimation quality. The motion quality of a optical flow
method is often indirectly related to its run time. Thus we
use two different methods to compute the dense optical flow.
The global optical flow method with a high quality that is
proposed by Werlberger et al. [19] (Huber-L1) and a local
optical flow method that has an overall lower quality but
is scalable in computational complexity [20] (RLOF). To
obtain a dense motion field by the RLOF we subsample
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τ = 5 τ = 20 τ = 50 τ = 5 τ = 20 τ = 50

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2. Examples for FTLE fields of a person without (a-d) and with carrying a bag (e-h) and different integration intervals τ for from top to bottom
the Huber-L1, RLOF1 and RLOF2 dense optical flow.

Figure 3. Partition of execution time in msec.

the image into a subset of cell with a given grid size.
For each cell a motion vector is computed. We use two
different grid sizes, RLOF1 denotes a used cell size of 5
and RLOF2 denotes a used cell size of 15. As shown in
Figure 2(a,e) the Huber-L1 flow is able to preserves the
silhouette of the person, while RLOF1/2 generates a blurred
and blocky vector field. Moreover the RLOF vector field
could not ensure to be able to compute a dense flow as
shown in the middle row of Figure 2 (a,e) where the motion
of some cells could not be computed.

The proposed system was implemented using an AMD
Phenom II X4 960 running at 2.99 GHz with a NVIDIA
GTX 480 graphic device. The RLOF and Huber-L1 method
was implemented on the GPU as well es the FTLE com-
putation. All remaining step were performed on the CPU.
Figure 3 shows the run time of the propose system. This
implementation is not able to provide the PCO detection in
real time but with its fastest configuration with 497ms it
has a good performance and is able e.g. to support forensic
analysis of video data.

Figure 4 shows the PR curves and Table I the measures
of the FTLE-HOG classifier. These experiments show the

discriminative behavior of PCO and none PCO samples
within the FTLE-HOG descriptor. Therefore the sample set
was randomly divided into 10% trainings and 90% test data.
The results of the RLOF1/2 flows become less precise than
the results of the Huber-L1 flow. However in comparison of
the source motion fields in Figure 2(a,e) they are remarkably
good for τ > 5. The application of the path line advection
is working as a deblocking filter in the space time-domain.
Thus with a large integration interval the motion silhouette
could be retrieve.

τ = 5
Accuracy Precision Recall
μ σ μ σ μ σ

Huber-L1 78.6% 0.01 55.3% 0.01 55.1% 0.02
RLOF1 75.8% 0.01 48.2% 0.02 48.8% 0.01
RLOF2 74.6% 0.01 46.3% 0.01 47.2% 0.02

τ = 20
Accuracy Precision Recall
μ σ μ σ μ σ

Huber-L1 81.6% 0.01 61.5% 0.01 61.5% 0.02
RLOF1 78.9% 0.01 55.6% 0.01 54.2% 0.02
RLOF2 79.2% 0.01 56.3% 0.01 54.9% 0.01

τ = 50
Accuracy Precision Recall
μ σ μ σ μ σ

Huber-L1 82.6% 0.01 63.5% 0.02 63.3% 0.02
RLOF1 79.9% 0.01 57.9% 0.01 55.9% 0.02
RLOF2 81.5% 0.01 61.3% 0.01 60.2% 0.02

Table I
CLASSIFICATION RESULTS WITH DIFFERENT INTEGRATION INTERVALS

τ TRAINED ON 10% AND TESTED ON 90% RANDOMLY SELECTED

SAMPLES. THE EVALUATION IS PERFORMED AT THE DETECTION LEVEL.

The results of Figure 4 and Table I are only partly repre-
sentative for the overall PCO accuracy as false negatives
of the HOG pedestrian detection step could induce that
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Figure 4. PR curves of the comparison of the FTLE-HOG classifier with different integration intervals τ , trained on 10% and tested on 90% of the
Pets2006 labeled HOG people detections. The evaluation is performed at the person detection level i.e. for each detection a classification and comparison
is done. Comparison of mean classification metrics.
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Figure 5. PR curves of the comparison of the FTLE-HOG classifier with different integration intervals τ , trained as in Figure 4. The evaluation is
performed at the object level i.e. for each object a classification and comparison is done.For RLOF1/2 the Huber-L1 curve is given as reference.

τ = 5
Accuracy Precision Recall

Huber-L1 70.5% 67.4% 46.0%
RLOF1 73.0% 72.1% 49.2%
RLOF2 66.2% 64.7% 35.5%

τ = 20
Accuracy Precision Recall

Huber-L1 70.5% 66.0% 49.2%
RLOF1 72.5% 74.3% 42.6%
RLOF2 69.3% 64.9% 45.3%

τ = 50
Accuracy Precision Recall

Huber-L1 72.7% 76.7% 53.5%
RLOF1 77.4% 90.0% 51.4%
RLOF2 76.4% 73.7% 59.6%

Table II
CLASSIFICATION RESULTS WITH DIFFERENT INTEGRATION INTERVALS

τ . THE EVALUATION IS PERFORMED AT THE OBJECT LEVEL.

pedestrians get excluded from the evaluation process shown
in Figure 4. Therefore Figure 5 and Table II shows the results
of a pedestrian related evaluation. Therefore each annotated
object is associated with a set of related classified PCO or
none PCO detection. If a ground truth object is not associ-
ated to any detection it counts as false negative. An object
is classified as carrying a baggage, if the major number of

Precision Recall
τ = 20 τ = 50 τ = 20 τ = 50

Huber-L1 60.4% 64.5% 57.1% 54.1%
RLOF1 48.0% 54.5% 46.2% 54.5%
RLOF2 64.8% 73.7% 45.3% 59.6%
Damen&Hogg 50.5% 55.4%

Table III
A COMPARISON OF DIFFERENT FTLE-HOG CLASSIFIER WITH THE

STATE-OF-THE-ART METHOD OF DAMEN&HOGG (MRF WITH PRIOR)
FOR THE ANNOTATED DATA PROVIDED IN [4].

related detections is classified as PCO. The results indicates
that with a large τ increases the classification performance.
In addition an accurate motion estimation method increases
the individual or detection based performance but, in this
application, within an approximated motion estimation the
overall performance is barely affected. In some cases the
accuracy and precision are increase, which is affected of the
blurring of the RLOF methods.

It should be kept in mind that to compute the FTLE field
of τ , 2τ frames are required to computed the respective
motion data. The interval of τ = 20 is a good compromise
of classification accuracy and observation time.

To compare the FTLE-HOG classification method with
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the state-of-the-art method proposed in [4] we have intro-
duced the label 4. Only ground truth annotations with label 4
are considered for the results of Table III which demonstrates
that our method outperforms the state-of-the-art.

VII. CONCLUSIONS

In summary we have proposed a method to detect people
carrying objects based on Lagrangian dynamics. We intro-
duced the notion of forward- and backward LCS towards
this application case and showed that this can be used to
improve the performance of state-of-the art methods. Our
approach, avoids the necessity of explicitly tracking objects
over multiple time-steps by extracting the FTLE field, which
directly encodes complex motion information over a given
time-interval. In contrast to previous approaches we avoid
the extraction of explicit ridge structures by applying the
HOG descriptor directly on the FTLE field. We have shown
that the appearance model benefit from an accurate but run
time intensive global optical flow method and that the our
method achieves good results by applying local optical flow
methods. The latter one are more efficient in run time,
but do not preserve the silhouette accurately. For future
work Lagrangian measures and LCS appears a powerful
tool to describe complex motion patterns in human action
recognition, without explicit object tracking. This might be
exploited for the detection of gestures and repeating motion
events.
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