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Abstract—The extraction of motion patterns from image se- much attention within the last decade. While FTLE provides a
quences based on the optical flow methodology is an important excellent starting point to gain insight into the global root
and timely topic among visual multi media applications. In this  hapayior within image sequences, special care has to be take
work we will present a novel framework that combines the optical - . .
flow methodology from image processing with methods developed for the design and appllca_tlon of Lagranglan_ measures tsvar
for the Lagrangian analysis of time-dependent vector fields. The image data, as there exist fundamental differences between
Lagrangian approach has been proven to be a valuable and image-based optical flow fields and real physical flows. Hence
powerful tool to capture the complex dynamic motion behavior the goal of this paper is to provide a consistent framework
within unsteady vector fields. To come up with a compact and 1, compute and evaluate Lagrangian features within image
applicable framework, this paper will provide the concepts on - . .
how to compute trajectory-based Lagrangian measures in series seque_nces, and to provide global, featl_Jre drlv_en segnemtat
of optical flow fields, a set of basic measures to capture the ON variable temporal scales to be used in a variety of compute
essence of the motion behavior within the image and a compact vision related tasks.

hierarchical, feature-based description of the resulting motion To achieve this goal this paper provides the following
features. The resulting toolbox will bee shown to be suitable for contributions:

an automated image analysis as well as compact visual analysis
of image sequences in its spatio-temporal context. We show its 1) Generalization and application of the Lagrangian
applicability for the task of motion feature description and ex- methodology towards the analysis of optical flow se-
traction on different temporal scales, crowd motion analysis, and df ideo d
automated detection of abnormal events within video sequences. quences extracted from video data _
) Introduction of a compact set of Lagrangian measures
. INTRODUCTION (namely trajectory arc length, direction, and separation)

) o i capturing core aspects of the geometric motion behavior
One of the visual key features in video data is the represen-  \ithin the time-dependent optical flow fields

tation of the underlying physical motion process. Opticalvfl 3) Feature based segmentation based on a persistence-
methods, allow to capture this underlying motion behavior ~ paced topological approach to provide an hierarchical
in terms of vector fields providing the transport informatio and compact representation of the Lagrangian measure
of image data between individual frames of the video data. | aqyits

On the one side, in computer vision there has been a larggy application of the presented concepts in a selected set of
body of work on how to evaluatéocal measures based on practical examples and computer vision tasks, including

optical flow and trajectory-based data [1], to capture and  ¢rowd movement segmentation and abnormal behavior
trace spatial motion information within subsequent image  yetection

frames. On the other side, a physically oriented trajeetory ] ) i )
based analysis of 2D time-dependent vector fields recently!n the remainder the paper is organized as follows: Section |
has been shown to provide valuable tool to capturegtbbal will provide an overview and formal definition about exigfin
dynamic structure within image motion on different tempordrajectory-based Lagrangian approaches, optical flow aaeth
scales. So called particle-based or Lagrangian methodw all°logies and scalar field topology using persistence. Fatigw
to describe the creation and evolution of more complex motighat, Section lIl will introduce the core components of the
patterns in their spatial context together with their terapo Lagrangian framework for computer vision tasks, and oatlin
development. In fluid flow applications especially the notag  its fundamental properties and application scenarioss Thi
Lagrangian Coherent Structures (LCS) [2] and their exipact includes the description of the relevant Lagrangian messur

using Finite Time Lyapunov Exponents (FTLE) [3] has gainell Section Ill-A and the description of the post-processing
in 1lI-B. Using the previous definition Section IV will show

our results on examining a selected set of video sequences
MMSP’12, September 17-19, 2012, Banff, Canada. under different analysis aspects. Finally, we will conelumir
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of the presented framework. explicitly designed for the analysis of physical flows, and
require fundamental properties such as area preservdttbe o
flow field [3] or continuous flow fields. This is not necessarily
The Lagrangian methods we will use to define our framéhe case for optical flow fields. Despite, there are still rro
work have their origins in the theory of dynamical systemsorrespondences between motion features and the notion of
and have been formalized in the context of time-dependdfILE. Finally, many physically inspired Lagrangian measur
vector field analysis, i.e. to describe fluid flow or magnetiare tuned towards specific motion features (i.e. vorticéglew
flux fields. Most of this analysis is focused on the notion aome of those aspects are less interesting for video asalgsi
transport barriers or so called Lagrangian Coherent Strest contrast, especially changes in velocities, direction coe-
(LCS). LCS represent a powerful way to capture the temporgpondence with special spatial regions are of high impogan
dynamics of a motion process by separating areas of coherent
motion within the vector field. An basic overview about I1l. CONCEPT

some applications has been provided by Peacock et al. [2]gne core aspect of Lagrangian methods hereby is the

The current stquarq to describe LCS is based on h‘?ig%'mputation of the so calletiow mapdefined ass™ (x, to) =
pdges in the Finite Time Lyapunov Exponents (FTLE) f'e@(x,to,r). The flow map defines a mapping of an initial point
introduced by Haller et al. [3], [4]. It measures the rate qf, jis agvected position after a predefined integration time
neighboring particle trajectories within the flow f|eld._ F_EEL starting att,. Combining all position for one specific point
has already been successfully deployed for the description o6 the intervalt, t, 4 7] creates a polynomial curve denoted
segmentation of crowd video footage by Ali et al. [5] andg paih Jine that describes a particle trajectory over time.
Umair et al.[6]. Despite capturing large scale motion esent £ 5 series of 2D flow fields, this trajectory has two spatial

has also be.e'n used to evaluate motion patterns in miQrQSCQmeponents by means of the image position, and a temporal
images of cilia organelles by Lukens etal. [7]. In closetiol  component that defines the transition between subsequent
to this, Brox et al. [8] presented a particle-based segrtienta aqes. Considering both components simultaneously leads

based on geometric trajectory clustering. In general Shi gf the definition of the space-time domain, that is already
al. [9] showed, that path line clustering can be improvedgsi ynown, for the description of local image features [14]. I ou

multiple geometric descriptors in terms of trajectoryibites.  context, local means that a certain measure considers only
Recently, Pobitzer et al. [10] presented a comparison ot @ gormation from fixed region in space-time domain, i.e. a
of basic Lagrangian measures, capturing different geomete el with a fixed filter size in spatial or temporal directio
aspects of trajectory such as helicity, arc length, andeyortj, contrast, global Lagrangian measures allows to compactl
measures. Itis state_d that a small subset attrlbut(_as isieutfi describe the geometric properties of path lines over atrarpi
to capture the most important aspects of the motion dynamigg,hora| intervalr, while the spatial behavior is dictated by
using clusterl_ng. _ _ ‘the optical flow fields. Formally, given a vector fieldx, t),

For most video analysis tasks segmentation of the motigp every specified space-time poiido, ¢)) € D we can start

information plays a central role. Ali et al. [S] used ridg&, path line. This can be formulated in terms of an initial ealu
information obtained from the FTLE field to provide a rougrbroblem:

segmentation of the motion information. Since FTLE desgib
only motion boundaries, this has to be accomplished by
artificially closing the resulting ridges using enclosedioas ¢ < X ) _ ( v(x(t),t) ) < X ) (0) = ( X >
as segments. In addition, combining forward and backward dt \ 1 1 ’ t to

regions [11], [12] allows to directly obtain coherent motio A haricle trajectory or path line, that describes the tpams
sets as enclosed regions. However, FTLE ridges in optical;

X . ) image information through the sequence can now be defined
flow fields are created by a variety of different effects, angl.
are prone to over-segmentation of complex motion fields. v(x, 1)

Furthermore, when applying the classic definition of FTLE p(x,1) = < 1 ) @)
directly to motion flow sequences, special consideratiaeh
to be made: First, FTLE is especially designed to extragine crucial aspect is the choice of the time interval paramet
boundariesbetweenareas of similar flow behavior, while for 7 that defines the temporal scale of features we are intereste
most tasks in video analysis we are interested in thoseaimiin- The parameter- determines the length and complexity
regions itself. This can be resolved using additional pata | of Lagrangian features and how many image frames are
properties (such as arc length), but requires a featuratede considered. All Lagrangian measures defined on trajestorie
description of the scalar field. One such stable, featuented P(x,t) can further be computed in forward and backward
description of scalar fields is presented by Weinkauf eti&].[ direction.
Using the concept of scalar field topology and persistence i )
further allows to abstract the structure of the underlyimgdgdfi A. Lagrangian Measures for Computer Vision Tasks
and handle noise in a consistent, feature preserving mannefor this framework we considered three types of Lagrangian
Second, most of the introduced Lagrangian descriptors hameasures\r(x, ), i.e. path line attributes:

Il. RELATED WORK
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Fig. 1. Concept of Lagrangian descriptors obtained from igangimage sequence using a series of optical flow fields.

« arc length: Accumulating all velocities along one specifidso-level contours on those fields. For this, we determine is
trajectory allows to define regions of similar flow speetevels AL, within the interval[0, maz(A7)] of similar motion

offer the intervalr. behavior and perform a connected component analysis on
those levels. As a result we obtain a contour tree similait 5 [
Aarer(x,t0) = / [v(e(x,to,7))l[207 (2)  as hierarchical representation of the Lagrangian mea3ie.

o ] o ) contour tree of the scalar field is a grapfi £, V) containing
« direction: _The motion Q|rectlon can be .obtalned bYs set of noded” and edges?. Each noder € V is associated
accumulating average differences to a given referengg 5 binary blob maskb,(x) that describes a connected

direction. component of an iso-level contour,
AarcX/Y(X7 tO) = C : /vz/y(¢(x7 thT))aT (3) b (X ¢ ) . {17 if AT(X,to) < K{lr (5)
v (&, 00) —
0, else

with ¢ being a normalization term
min(L, ||v(é(x, to, 7))||2) ’ and the iso-level value itseﬁ_lr,v. o . _
[[v(o(x,to,7))|[2 + € (4) Note, that this can be modified to any given input dimension.
In order to avoid over-segmentation or inconsistent featur
ande a small constant to avoid getting singular. introduced by noise, we apply a persistence-based singplific
- separation: The separation between neighboring particlgon of the resulting hierarchy [13], that usually signifitiy
trajectories is encoded in the FTLE measure [3]. Theduces the number of salient features.
FTLE value is obtained by considering the time normal- Having obtained the Lagrangian scalar fields and hierarchi-
ized logarithm of the spatial flow map derivatives. cal descriptors, offers a variety of post processing ogtitin
Besides this predefined measures, any scalar descrigiertuned towards the respective analysis tasks. In a general
available in the spatio-temporal context (e.g. regional- @nalysis setting we can differentiate two major way to deal
edge information) of trajectories can be defined in an irtiegwith the resulting output:

¢ =

fashion. First, we can directly use the output for a direct and
interactive visual analysis. This allows for a compressed
B. Hierarchical Topologies on Lagrangian Measures representation of motion features in space time domain, and
even to identify specific motion features within longer dade
Lagrangian measure Hierarchical representation sequences without considering the complete sequence.

Second, we can construct automated analysis approaches
based on the resulting representations. This way we can
efficiently describe repeating patterns of motion or detect
irregularities in the corresponding representation.

/N IV. RESULTS AND APPLICATIONS
o In order to demonstrate the practical usability of our frame

Fig. 2.  Concept of contour-based hierarchical representasf scalar WOrk we applied the presented concepts to set of basic test
fields [15] data sets.

The output of all previously described Lagrangian measur8s Crowd Segmentation
is a scalar field, usually in the same resolution as the inputAs described in the previous Section the parametaitows
image sequence. Lagrangian features in this scalar fietds tr describe motion events in the video on different temporal
now defined as locally extremal areas, hence minima- scales. Figure 3 illustrates the effect of increasiran a traffic
maxima regions. To extract those features, we propose #exjuence. While small tau values allow to capture individual
use a topology oriented approach based on the extractioncafs, higher values capture the notion of lanes. Further the
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direction measure directly delivers clearly separatedtehs in
terms of groups moving in opposite directions. The Intégrat
of multiple frames allows for a temporal smoothing of salien
motion information over time, as single optical flow fieldade

to contain significantly more noise. In our experiments we
found, that using smaller values for compactly describes
motion features over multiple frames while keeping smatl bu
salient features without additional smoothing. In additio
this, larger temporal scales allow to group together object

Ground Truth

Detection Result

of similar motion characteristics, as they blend togethrer i

the respective Lagrangian field as illustrated in Figurea8t | AX;:;‘WSQ ‘ ‘ ‘

image. o | | /M\m | | ‘ N
Figure 4 shows the result for visualizing the resulting La- ° 200 a0 0 T

grangian scalar fields on= 10 for the direction measure on a ‘ (b) hall

pedestrian crossing sequence. Looking at the resultirg ifiel
space time domain gives a clear notion on the temporal oelati
of single motion events and group motion over the respective
video sequence. In addition to this, the presentation icespa
time allows to visually compress the motion information of
the video sequence into one image.

An example for combining different Lagrangian measures
to perform task based segmentations is presented in Figu

Ground Truth

Detection Result

5. Using the arc length measure allows to identify the fastes
person in the marathon sequence based on their image locati e : :

in 5 a) and temporal occurrence in the sequence in 5 d 2 A /L N ]
. . . 1L I SO S G| | . L
Figure 5 b) shows the image blended together with coloi o 001000 100 200 200 00 300 4000
coded directions, which emphasizes portions of the image _(c) square

moving against the major flow direction. Again, the illusiva
in space time in 5 e) allows to clarify, at which time the
associated events have occurred.

B. Abnormal Event Detection

Besides segmentation and visual analysis, our frame work
can be used to automate the detection of salient features in

image sequences. The contour tree that contains the tgpolot Gl

of the time-normalized arc length,,.r(x,t;) contains the Deteet Resel

structured information about the undirected motion compo-
nents of a short video sequence. We used the mean of tt | Reense ‘ A ‘ ]
surface integrals: P T T T T T R

Fig. 6. lllustration of the results for abnormal event deétector the three

tarer,(G) Z ZAMCL » 0o (%, 10) (6) scenarios of the UMN dataset. The ground truth bar and detebar shows

|V| the labels of each frame, green represents normal frames arabnedmal

frames and is presented in conjunction with the responser, (G) of the arc

This setting is tested on the UMN dataset to detect abnormalght multi layer tree. The contours of the tree nodes arenstor normal

events. The dataset contains 11 different scenarios ofcapes and abnormal behavior.
event in 3 different indoor and outdoor scenes.
Figure 6 shows the results of the experiments, where the
responseu,.r(G) of is used in combination with a adaptive
threshold to detected frames containing abnormal motitmgh amount of false positives. Generally the detections of
behavior. A Gaussian model is used to learn the initial patie proposed systems are longer and begin at an earlier time
of normal behavior and is updated online. Abnormal framekan the annotated ground truth. On reason is found by tlie pat
correspond to outliers that are detected by the Mahalanobie integration were motion information of future framee a
distance. taken into account to estimate the current scalar field. Aerot
The results are produced using integration intervat 10, reason is found in the annotation itself as shown in Figueg 6(
15 levels and a persistence measure.ofhe overall results the abnormal activity in many cases labeled very late, #fier
shows that the proposed framework is capable to detect epehnson starting to run which explains the delay as the pexpos
abnormal event annotated in the database without havingystem reacts immediately to motion changes.
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Fig. 3. Direction measure applied to a car crossing sequénceasingr allows to describe motion features on different temporalescalvhile individual
cars can be captured on smallscales, large values capture the notions of lanes, thaniEctearly segmented by the direction measure (red denotes larg
positive motion in x-direction, blue negative movement in sedtion).

Crossing Sequence Space Time Domain

T=10
Fig. 4. Using the direction measure and a space time view taietime-dependent crowd dynamics in a junction sequence fianeainterval ofr = 10.

Maraton Sequence Space Time Domain - Arc Length TAU=10 Direction TAU=10

&)

Fig. 5. Blending of Lagrangian fields with initial frame to higght important regions. Figure a) highlights the fastestup and person in the sequence,
while Figure b) emphasizes all objects moving against the nfljor direction. Further, the space time views in c) to e) rewbaltemporal relation of those
events (the blue arrow denotes temporal direction).

V. CONCLUSION applied the resulting framework for crowd segmentation and

In this work we presented the concept of a LagrangidPnormal behavior detection in video sequences.

methodology framework for computer vision tasks. We pro-

posed the conceptual basics in order to apply LagrangianOne limitation to obtain reliable results of the Lagrangian
methods to a series of optical flow fields, and proposethalysis is the quality of the underlying optical flow fields
basic measures such as arc length, direction and sepatatiosequence. Although Lagrangian features can be extraciegl us
analyze time-dependent motion behavior of image sequendaster, less accurate optical flow methods, artifacts sl e
For post-processing and evaluation of motion features wpeesent in the resulting Lagrangian description. Further,
used an hierarchical contour-based representation, lbatsa grangian methods are only suited to describe low-level anoti
an feature related abstract evaluation and combination. Weéatures, while e.g. occlusion cannot be directly expiksse
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