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Abstract—The extraction of motion patterns from image se-
quences based on the optical flow methodology is an important
and timely topic among visual multi media applications. In this
work we will present a novel framework that combines the optical
flow methodology from image processing with methods developed
for the Lagrangian analysis of time-dependent vector fields. The
Lagrangian approach has been proven to be a valuable and
powerful tool to capture the complex dynamic motion behavior
within unsteady vector fields. To come up with a compact and
applicable framework, this paper will provide the concepts on
how to compute trajectory-based Lagrangian measures in series
of optical flow fields, a set of basic measures to capture the
essence of the motion behavior within the image and a compact
hierarchical, feature-based description of the resulting motion
features. The resulting toolbox will bee shown to be suitable for
an automated image analysis as well as compact visual analysis
of image sequences in its spatio-temporal context. We show its
applicability for the task of motion feature description and ex-
traction on different temporal scales, crowd motion analysis, and
automated detection of abnormal events within video sequences.

I. I NTRODUCTION

One of the visual key features in video data is the represen-
tation of the underlying physical motion process. Optical flow
methods, allow to capture this underlying motion behavior
in terms of vector fields providing the transport information
of image data between individual frames of the video data.
On the one side, in computer vision there has been a large
body of work on how to evaluatelocal measures based on
optical flow and trajectory-based data [1], to capture and
trace spatial motion information within subsequent image
frames. On the other side, a physically oriented trajectory-
based analysis of 2D time-dependent vector fields recently
has been shown to provide valuable tool to capture theglobal
dynamic structure within image motion on different temporal
scales. So called particle-based or Lagrangian methods allow
to describe the creation and evolution of more complex motion
patterns in their spatial context together with their temporal
development. In fluid flow applications especially the notion of
Lagrangian Coherent Structures (LCS) [2] and their extraction
using Finite Time Lyapunov Exponents (FTLE) [3] has gained
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much attention within the last decade. While FTLE provides a
excellent starting point to gain insight into the global motion
behavior within image sequences, special care has to be taken
for the design and application of Lagrangian measures towards
image data, as there exist fundamental differences between
image-based optical flow fields and real physical flows. Hence,
the goal of this paper is to provide a consistent framework
to compute and evaluate Lagrangian features within image
sequences, and to provide global, feature driven segmentation
on variable temporal scales to be used in a variety of computer
vision related tasks.

To achieve this goal this paper provides the following
contributions:

1) Generalization and application of the Lagrangian
methodology towards the analysis of optical flow se-
quences extracted from video data

2) Introduction of a compact set of Lagrangian measures
(namely trajectory arc length, direction, and separation)
capturing core aspects of the geometric motion behavior
within the time-dependent optical flow fields

3) Feature based segmentation based on a persistence-
based topological approach to provide an hierarchical
and compact representation of the Lagrangian measure
results

4) Application of the presented concepts in a selected set of
practical examples and computer vision tasks, including
crowd movement segmentation and abnormal behavior
detection

In the remainder the paper is organized as follows: Section II
will provide an overview and formal definition about existing
trajectory-based Lagrangian approaches, optical flow method-
ologies and scalar field topology using persistence. Following
that, Section III will introduce the core components of the
Lagrangian framework for computer vision tasks, and outline
its fundamental properties and application scenarios. This
includes the description of the relevant Lagrangian measures
in Section III-A and the description of the post-processing
in III-B. Using the previous definition Section IV will show
our results on examining a selected set of video sequences
under different analysis aspects. Finally, we will conclude our
remarks with a discussion on limitations and future prospects
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of the presented framework.

II. RELATED WORK

The Lagrangian methods we will use to define our frame-
work have their origins in the theory of dynamical systems
and have been formalized in the context of time-dependent
vector field analysis, i.e. to describe fluid flow or magnetic
flux fields. Most of this analysis is focused on the notion of
transport barriers or so called Lagrangian Coherent Structures
(LCS). LCS represent a powerful way to capture the temporal
dynamics of a motion process by separating areas of coherent
motion within the vector field. An basic overview about
some applications has been provided by Peacock et al. [2].
The current standard to describe LCS is based on height-
ridges in the Finite Time Lyapunov Exponents (FTLE) field
introduced by Haller et al. [3], [4]. It measures the rate of
neighboring particle trajectories within the flow field. FTLE
has already been successfully deployed for the descriptionand
segmentation of crowd video footage by Ali et al. [5] and
Umair et al.[6]. Despite capturing large scale motion events it
has also been used to evaluate motion patterns in microscopic
images of cilia organelles by Lukens et al. [7]. In close relation
to this, Brox et al. [8] presented a particle-based segmentation
based on geometric trajectory clustering. In general Shi et
al. [9] showed, that path line clustering can be improved using
multiple geometric descriptors in terms of trajectory attributes.
Recently, Pobitzer et al. [10] presented a comparison on a set
of basic Lagrangian measures, capturing different geometric
aspects of trajectory such as helicity, arc length, and vortex
measures. It is stated that a small subset attributes is sufficient
to capture the most important aspects of the motion dynamics
using clustering.

For most video analysis tasks segmentation of the motion
information plays a central role. Ali et al. [5] used ridge
information obtained from the FTLE field to provide a rough
segmentation of the motion information. Since FTLE describes
only motion boundaries, this has to be accomplished by
artificially closing the resulting ridges using enclosed regions
as segments. In addition, combining forward and backward
regions [11], [12] allows to directly obtain coherent motion
sets as enclosed regions. However, FTLE ridges in optical
flow fields are created by a variety of different effects, and
are prone to over-segmentation of complex motion fields.

Furthermore, when applying the classic definition of FTLE
directly to motion flow sequences, special considerations have
to be made: First, FTLE is especially designed to extract
boundariesbetweenareas of similar flow behavior, while for
most tasks in video analysis we are interested in those similar
regions itself. This can be resolved using additional path line
properties (such as arc length), but requires a feature oriented
description of the scalar field. One such stable, feature oriented
description of scalar fields is presented by Weinkauf et al. [13].
Using the concept of scalar field topology and persistence
further allows to abstract the structure of the underlying field
and handle noise in a consistent, feature preserving manner.
Second, most of the introduced Lagrangian descriptors have

explicitly designed for the analysis of physical flows, and
require fundamental properties such as area preservation of the
flow field [3] or continuous flow fields. This is not necessarily
the case for optical flow fields. Despite, there are still strong
correspondences between motion features and the notion of
FTLE. Finally, many physically inspired Lagrangian measures
are tuned towards specific motion features (i.e. vortices) while
some of those aspects are less interesting for video analysis. In
contrast, especially changes in velocities, direction andcorre-
spondence with special spatial regions are of high importance.

III. C ONCEPT

One core aspect of Lagrangian methods hereby is the
computation of the so calledflow mapdefined asφτ (x, t0) =
φ(x, t0, τ). The flow map defines a mapping of an initial point
to its advected position after a predefined integration timeτ

starting att0. Combining all position for one specific point
over the interval[t0, t0+τ ] creates a polynomial curve denoted
as path line that describes a particle trajectory over time.
For a series of 2D flow fields, this trajectory has two spatial
components by means of the image position, and a temporal
component that defines the transition between subsequent
images. Considering both components simultaneously leads
to the definition of the space-time domain, that is already
known for the description of local image features [14]. In our
context, local means that a certain measure considers only
information from fixed region in space-time domain, i.e. a
kernel with a fixed filter size in spatial or temporal direction.
In contrast, global Lagrangian measures allows to compactly
describe the geometric properties of path lines over an arbitrary
temporal intervalτ , while the spatial behavior is dictated by
the optical flow fields. Formally, given a vector fieldv(x, t),
at every specified space-time point(x0, t0) ∈ D we can start
a path line. This can be formulated in terms of an initial value
problem:
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A particle trajectory or path line, that describes the transport
of image information through the sequence can now be defined
as:

p(x, t) =

(
v(x, t)

1

)
(1)

One crucial aspect is the choice of the time interval parameter
τ , that defines the temporal scale of features we are interested
in. The parameterτ determines the length and complexity
of Lagrangian features and how many image frames are
considered. All Lagrangian measures defined on trajectories
p(x, t) can further be computed in forward and backward
direction.

A. Lagrangian Measures for Computer Vision Tasks

For this framework we considered three types of Lagrangian
measuresΛT (x, t0), i.e. path line attributes:
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Fig. 1. Concept of Lagrangian descriptors obtained from an given image sequence using a series of optical flow fields.

• arc length: Accumulating all velocities along one specific
trajectory allows to define regions of similar flow speed
offer the intervalτ .

ΛarcL(x, t0) =

∫
||v(φ(x, t0, τ))||2∂τ (2)

• direction: The motion direction can be obtained by
accumulating average differences to a given reference
direction.

ΛarcX/Y (x, t0) = ζ ·

∫
vx/y(φ(x, t0, τ))∂τ (3)

with ζ being a normalization term

ζ =
min(1, ||v(φ(x, t0, τ))||2)

||v(φ(x, t0, τ))||2 + ǫ
(4)

and ǫ a small constant to avoidζ getting singular.
• separation: The separation between neighboring particle

trajectories is encoded in the FTLE measure [3]. The
FTLE value is obtained by considering the time normal-
ized logarithm of the spatial flow map derivatives.

Besides this predefined measures, any scalar descriptor
available in the spatio-temporal context (e.g. regional- or
edge information) of trajectories can be defined in an integral
fashion.

B. Hierarchical Topologies on Lagrangian Measures
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Fig. 2. Concept of contour-based hierarchical representation of scalar
fields [15]

The output of all previously described Lagrangian measures
is a scalar field, usually in the same resolution as the input
image sequence. Lagrangian features in this scalar fields are
now defined as locally extremal areas, hence minima- or
maxima regions. To extract those features, we propose the
use a topology oriented approach based on the extraction of

iso-level contours on those fields. For this, we determine iso-
levels Λ̂l

T within the interval[0,max(ΛT )] of similar motion
behavior and perform a connected component analysis on
those levels. As a result we obtain a contour tree similar to [15]
as hierarchical representation of the Lagrangian measure.The
contour tree of the scalar field is a graphG(E, V ) containing
a set of nodesV and edgesE. Each nodev ∈ V is associated
to a binary blob maskbv(x) that describes a connected
component of an iso-level contour,

bv(x, t0) =

{
1, if ΛT (x, t0) ≤ Λ̂l

T

0, else
(5)

and the iso-level value itself̂Λl
T,v.

Note, that this can be modified to any given input dimension.
In order to avoid over-segmentation or inconsistent feature
introduced by noise, we apply a persistence-based simplifica-
tion of the resulting hierarchy [13], that usually significantly
reduces the number of salient features.

Having obtained the Lagrangian scalar fields and hierarchi-
cal descriptors, offers a variety of post processing options to
be tuned towards the respective analysis tasks. In a general
analysis setting we can differentiate two major way to deal
with the resulting output:

First, we can directly use the output for a direct and
interactive visual analysis. This allows for a compressed
representation of motion features in space time domain, and
even to identify specific motion features within longer video
sequences without considering the complete sequence.

Second, we can construct automated analysis approaches
based on the resulting representations. This way we can
efficiently describe repeating patterns of motion or detect
irregularities in the corresponding representation.

IV. RESULTS AND APPLICATIONS

In order to demonstrate the practical usability of our frame-
work we applied the presented concepts to set of basic test
data sets.

A. Crowd Segmentation

As described in the previous Section the parameterτ allows
to describe motion events in the video on different temporal
scales. Figure 3 illustrates the effect of increasingτ on a traffic
sequence. While small tau values allow to capture individual
cars, higher values capture the notion of lanes. Further the



direction measure directly delivers clearly separated clusters in
terms of groups moving in opposite directions. The Integration
of multiple frames allows for a temporal smoothing of salient
motion information over time, as single optical flow fields tend
to contain significantly more noise. In our experiments we
found, that using smaller values forτ compactly describes
motion features over multiple frames while keeping small but
salient features without additional smoothing. In addition to
this, larger temporal scales allow to group together objects
of similar motion characteristics, as they blend together in
the respective Lagrangian field as illustrated in Figure 3, last
image.

Figure 4 shows the result for visualizing the resulting La-
grangian scalar fields onτ = 10 for the direction measure on a
pedestrian crossing sequence. Looking at the resulting field in
space time domain gives a clear notion on the temporal relation
of single motion events and group motion over the respective
video sequence. In addition to this, the presentation in space
time allows to visually compress the motion information of
the video sequence into one image.

An example for combining different Lagrangian measures
to perform task based segmentations is presented in Figure
5. Using the arc length measure allows to identify the fastest
person in the marathon sequence based on their image location
in 5 a) and temporal occurrence in the sequence in 5 d).
Figure 5 b) shows the image blended together with color
coded directions, which emphasizes portions of the image
moving against the major flow direction. Again, the illustration
in space time in 5 e) allows to clarify, at which time the
associated events have occurred.

B. Abnormal Event Detection

Besides segmentation and visual analysis, our frame work
can be used to automate the detection of salient features in
image sequences. The contour tree that contains the topology
of the time-normalized arc lengthΛarcL(x, t0) contains the
structured information about the undirected motion compo-
nents of a short video sequence. We used the mean of the
surface integrals:

µarcL(G) =
1

|V |

∑

V

(
∑

x

Λ̂l
arcL,v · bv(x, t0)

)
(6)

This setting is tested on the UMN dataset to detect abnormal
events. The dataset contains 11 different scenarios of an escape
event in 3 different indoor and outdoor scenes.

Figure 6 shows the results of the experiments, where the
responseµarcL(G) of is used in combination with a adaptive
threshold to detected frames containing abnormal motion
behavior. A Gaussian model is used to learn the initial part
of normal behavior and is updated online. Abnormal frames
correspond to outliers that are detected by the Mahalanobis
distance.

The results are produced using integration intervalτ = 10,
15 levels and a persistence measure of2. The overall results
shows that the proposed framework is capable to detect each
abnormal event annotated in the database without having a
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Fig. 6. Illustration of the results for abnormal event detection for the three
scenarios of the UMN dataset. The ground truth bar and detection bar shows
the labels of each frame, green represents normal frames and redabnormal
frames and is presented in conjunction with the responseµarcL(G) of the arc
lenght multi layer tree. The contours of the tree nodes are shown for normal
and abnormal behavior.

hugh amount of false positives. Generally the detections of
the proposed systems are longer and begin at an earlier time
than the annotated ground truth. On reason is found by the path
line integration were motion information of future frames are
taken into account to estimate the current scalar field. Another
reason is found in the annotation itself as shown in Figure 6(c)
the abnormal activity in many cases labeled very late, afterthe
person starting to run which explains the delay as the proposed
system reacts immediately to motion changes.
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Fig. 3. Direction measure applied to a car crossing sequence.Increasingτ allows to describe motion features on different temporal scales. While individual
cars can be captured on smallτ scales, large values capture the notions of lanes, that become clearly segmented by the direction measure (red denotes large
positive motion in x-direction, blue negative movement in x-direction).
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Fig. 4. Using the direction measure and a space time view to capture time-dependent crowd dynamics in a junction sequence for atime interval ofτ = 10.
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Fig. 5. Blending of Lagrangian fields with initial frame to highlight important regions. Figure a) highlights the fastest group and person in the sequence,
while Figure b) emphasizes all objects moving against the majorflow direction. Further, the space time views in c) to e) revealthe temporal relation of those
events (the blue arrow denotes temporal direction).

V. CONCLUSION

In this work we presented the concept of a Lagrangian
methodology framework for computer vision tasks. We pro-
posed the conceptual basics in order to apply Lagrangian
methods to a series of optical flow fields, and proposed
basic measures such as arc length, direction and separationto
analyze time-dependent motion behavior of image sequences.
For post-processing and evaluation of motion features we
used an hierarchical contour-based representation, that allows
an feature related abstract evaluation and combination. We

applied the resulting framework for crowd segmentation and
abnormal behavior detection in video sequences.

One limitation to obtain reliable results of the Lagrangian
analysis is the quality of the underlying optical flow fields
sequence. Although Lagrangian features can be extracted using
faster, less accurate optical flow methods, artifacts will also be
present in the resulting Lagrangian description. Further,La-
grangian methods are only suited to describe low-level motion
features, while e.g. occlusion cannot be directly expressed.
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