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ABSTRACT
In this paper we propose a novel motion saliency estimation
method for video sequences considering the motion between
successive frames and their corresponding parametric cam-
era motion representation. Background motion is compen-
sated for every pair of frames, revealing areas that contain
relative motion. Considering that these areas will likely at-
tract the attention of the viewer and in line with properties
of the human visual system, regarding spatially invariant fo-
cus distribution, we augment their effect on the quality esti-
mation. The generated saliency maps are thus incorporated
in the spatial pooling stage of several video quality metrics,
and experimental evaluation on the LIVE video database1

shows that this strategy enhances their performance.
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1. INTRODUCTION
The broad use of video in communication services, such as
IPTV and video conferencing, resulted in the increasing in-
terest of the image processing research community in the
topic of objective Video Quality Assessment (VQA). As hu-
mans are the final judges of service quality, key issue is the
development of algorithms that efficiently assess the quality
experienced by users (QoE). The commonly acceptable way
for assessing the video quality is to conduct a large scale sub-
jective study where a group of observers are asked to provide
their personal opinions of the video. This subjective Mean
Opinion Score (MOS) can then be regarded as the ground-
truth subjective quality of the video sequences. In practice
subjective experiments are time-, effort- and resource- con-
suming, and therefore objective video quality metrics that
can automatically evaluate the video’s perceptual quality are
appreciated.

1Publicly available at
http://live.ece.utexas.edu/research/quality/live video.html

In this paper we focus on full reference objective quality
assessment algorithms that employ both the reference and
the distorted video sequences. Among the most widely used
metrics in this category are the Mean Square Error (MSE)
and the Peak Signal to Noise Ratio (PSNR), which are
straight-forward in implementation but do not consider any
properties of the Human Visual System (HVS). Towards this
direction a large variety of metrics have been proposed in the
past. The Structural SIMilarity index (SSIM) [14] captures
the structure information loss between the reference and dis-
torted image to estimate the perceptual quality. Initially it
was proposed in single scale, and multiscale versions of it [16]
followed. The Visual Information Fidelity criterion (VIF)
[11] is another powerful metric that employs the mutual in-
formation between the original and the distorted image to
estimate the perceived quality. The Video Quality Model
(VQM) [8], which is adopted by the American national stan-
dards institute, analyzes 3D spatio-temporal blocks to ex-
tract the salient features for estimating the video quality
map, whereas the MOtion- based Video Integrity Evaluation
(MOVIE) metric [9] utilizes properties of the visual cortex
neurons to track perceptually relevant distortions along mo-
tion trajectories. The latter is a computationally complex
metric since it relies in 3D optical flow estimation.

Existing works on the exploitation of temporal distortions
in video sequences report improvements on the prediction
performance of standard quality metrics by taking into ac-
count importance maps and appropriate pooling techniques.
Moorthy et al. [6] propose a computationally efficient VQA
algorithm that assesses the quality in block-based level and
subsequently employs percentile pooling. Towards VQA en-
hancement Ma et al. [5] propose a visual saliency estimation
algorithm, based on the quaternion Fourier transform of the
motion vectors after block matching. Recently, the authors
in [13] have proposed a video quality metric that employs
the structural information contained in two descriptors ex-
tracted from the 3D structure tensors, and its corresponding
eigenvector, whereas in [15] a model of human visual speed
perception is incorporated to model visual perception in an
information communication framework.

In line with the idea that the performance of VQA metrics
can be improved by considering features along the temporal
trajectories, in this paper we propose to exploit the motion
information between successive video frames for estimation
of motion saliency maps and employ them for spatial pool-
ing of video quality metrics. By giving higher weighting to
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Figure 1: Proposed method overview

regions with detected motion, we expect these regions to at-
tract humans’ attention, and thus make distortion on these
areas more perceivable. Experimental results on various
video quality metrics evaluate the efficiency of our method.

The paper is organized as follows. Section 2 provides an
overview of the proposed motion saliency estimation and de-
scribes the spatial pooling strategy that is employed for in-
corporation in objective video quality prediction algorithms.
Section 3 presents and discusses the experimental evaluation
of our algorithm and Ssection 4 summarizes and closes this
paper.

2. PROPOSED MOTION SALIENCY MAPS
AND VQA ENHANCEMENT

The main idea of our proposed method is to detect regions
that contain significant relative motion between frames, and
augment their effect to the image quality index in the spatial
pooling stage that will follow. This means that if a distor-
tion occurs in a region that contains motion, it is expected
to attract the attention of the viewer and thus to have a
negative impact on the quality assessment in comparison to
a distortion that occurs in a region not containing motion.

2.1 Motion Saliency maps Estimation
Motion between successive frames is what differentiates a
video sequence from a set of independent still images. Mo-
tion can be considered as a mixture of foreground object mo-
tion and camera motion. If we assume that the background
(i.e. camera) motion is the dominant motion between two
frames of a video sequence, then the foreground motion is
likely to attract visual attention, according to the proper-
ties of the HVS that are explored with respect to this point
of view in [15]. Based on this observation we propose the
following strategy, which is illustrated in Figure 1.

First we estimate the perspective (eight-parameter) motion
model that describes the background motion between two
successive frames of the reference sequence Rn − 1 and Rn.
This is realized as described in [3] where a set of feature-
points are detected in each frame, the correspondences be-
tween the two sets of points are established for successive
frames, and finally a motion model Hn−1

n is fitted to the cor-
respondences. The RANdom SAmpled Consensus (RANSAC)
method is employed for fast and accurate model fit based on
features which are detected using the KLT feature tracker.
Based on the estimated motion model Hn−1

n and the corre-
sponding frame Rn−1, the estimated frame R̂n is computed
and subsequently subtracted from Rn. This results in the

(global motion) compensated absolute error frame En where
high error energy corresponds mainly to motion of the fore-
ground area.

Studies on the HVS properties have shown that the human
retina is highly space variant in processing and sampling of
visual information [2]. The accuracy is highest in the central
point of focus, the fovea, and the peripheral visual field is
perceived with lower accuracy. In our case, we consider the
locations of the highest motion compensated error energy as
the central points of focus, and to address the gradually de-
creasing focus, the error maps are low-pass filtered resulting
in the motion saliency map MSA.

MSA(x, y, n) = α ∗ |R̂(x, y, n)−R(x, y, n)| (1)

Anisotropic diffusion filtering (α) [7] is employed here, as
similarly employed for the scope of object segmentation in
[1]. Anisotropic diffusion offers a non-linear and space-variant
filtering of the error frame, that while having a low pass
character preserves the edges of the image. In this way we
give higher weighting to regions that have moved between
two successive frames and we expect that they are more
likely to attract visual attention in comparison to other ar-
eas that have not moved (or have moved with the back-
ground). As shown in Figure 2 our motion saliency estima-
tion method can significantly detect the motion of the fore-
ground (brighter areas) in the MSA map. Of course motion
is not the only feature that attracts visual attention. Other
features such as contrast, color and structural information
will be considered implicitly through the incorporation in
standard objective metrics that is following described.

2.2 Spatial Pooling
Standard image quality metrics tend to generate a quality
index Θ between a reference and a distorted image (R and D
respectively) and then consider that every pixel contributes
equally to the overall image metric by averaging over all pixel
locations. As we want to avoid this uniform spatial pool-
ing, we employ the weighted mean spatial pooling strategy
[2]. The estimated motion saliency maps are incorporated in
MSE, SSIM [14], MS-SSIM [16] and VIF [11] metrics. The
weighted mean for single scale metrics in (x, y) location of
the nth frame [15] is formulated as

Φ(x, y, n) =

∑Nx
x=1

∑Ny

y=1 w(x, y, n)Θ(x, y, n)∑Nx
x=1

∑Ny

y=1 w(x, y, n)
(2)

where Φ is the weighted metric and Nx, Ny are the frame
dimensions. The squared error map serves as quality index
in the case of MSE, and the SSIM index map is employed for
SSIM. The proposed motion saliency maps MSA(x, y, n) are
used as weighting maps w, whereas in the following section, a
local saliency map is additionally considered for comparison.
For multiscale metrics, that use M scales, the weighting map
is scaled correspondingly and the overall metric is calculated
as following

Φ(x, y, n) =

M∏
j=1

∑Nx
x=1

∑Ny

y=1 w(x, y, n)Θ(x, y, n)∑Nx
x=1

∑Ny

y=1 w(x, y, n)
(3)

MS-SSIM incorporates SSIM evaluations in different scales.
To this end, SSIM index maps are, weighted according to Eq.
2 in each scale and then the various weighted scaled indexes



are combined as described in [16]. For VIF [11], the mutual
information (between the input and the output of the HVS
channel) for the reference image and the mutual information
(between the input and the output of the HVS channel) for
the distorted image are separately weighted using Eq. 2,
scaled to the corresponding scales and finally combined over
multiple scales.

After the local weighted quality score of every frame Φ(n) is
generated, by considering the motion saliency map, tempo-
ral pooling follows. The local scores are averaged over the
T frames of the video sequence to yield the overall weighted
quality score Φ.

3. EXPERIMENTAL EVALUATION
We evaluate the performance of our proposed algorithm on
the above mentioned metrics on the LIVE video database
[10], developed at the University of Texas at Austin. The
LIVE database contains 150 distorted videos obtained from
10 uncompressed reference videos ( 768 × 432 pixels, 3206
frames totally) of natural scenes. The distorted videos are
created using four commonly encountered distortion types.
These include MPEG-2 compression, H.264 compression,
simulated transmission of H.264 compressed bitstreams through
error-prone IP networks, and through error-prone wireless
networks. Each video was assessed by 38 human subjects in
a single stimulus study with hidden reference removal, where
the subjects scored the video quality on a continuous quality
scale. The difference scores of a given subject are computed
by subtracting the score assigned by the subject to the dis-
torted video sequence from the score assigned by the same
subject to the corresponding reference video sequence. Fol-
lowing the Difference Mean Opinion Score (DMOS) of each
video is computed as the mean of the rescaled standardized
difference scores (Z-scores) of statistically reliable subjects.

The quality prediction performance of the weighted met-
rics is evaluated using three performance indicators. As the
Video Quality Experts Group (VQEG) recommends [12], we
use the Pearson Linear Correlation Coefficient (LCC) and
the Spearman Rank Order Correlation Coefficient (SROCC)
between DMOS and the objective score after nonlinear re-
gression. Additionally, we employ the Root Mean Square
Error (RMSE) in the same manner. Non linear regression
is applied in order to align each video quality metric output
to the subjective rating scale using the logistic function de-
scribed in [12]. Figure 3 illustrates an example scatter plot
of predicted DMOS using standard MS-SSIM and weighted
MS-SSIM using the proposed method (green and blue marks
respectively) versus DMOS.

Table 1 shows the performance evaluation of various objec-
tive VQA algorithms. VS denotes the Visual Saliency model
proposed in [5]. MSA is our proposed method, whereas lo-
cal saliency denotes the employment of local saliency maps
proposed by Itti & Koch [4] for weighting in the same man-
ner as described in the previous section. For each evaluation
metric we highlight the best results with boldface. Larger
LCC and SROCC indicate better correlation between objec-
tive and subjective scores, while smaller RMSE is indicator
of better performance. Saliency weighted metrics perform
better compared to non-weighted metrics. Motion saliency
spatial pooling proves to be more beneficial for objective

Table 1: VQA metrics performance on LIVE
database. Data for VS from [5]

Algorithm LCC SROCC RMSE

MSE 0.5614 0.5391 9.0839
MSE VS [5] 0.6295 0.6268 8.5310
MSE w=local saliency 0.5410 0.5267 9.2319
MSE w=proposed MSA 0.5669 0.5593 9.0427

SSIM 0.5411 0.5231 9.2315
SSIM VS [5] 0.6308 0.6187 8.5310
SSIM w=local saliency 0.6064 0.5825 8.7284
SSIM w=proposed MSA 0.6470 0.6334 8.3698

MS-SSIM 0.7556 0.7474 7.1911
MSSSIM VS [5] 0.7583 0.7468 7.1570
MS-SSIM w=local saliency 0.7623 0.7589 7.1042
MS-SSIM w=proposed MSA 0.8009 0.7964 6.5726

VIF 0.5322 0.5297 9.2936
VIF w=local saliency 0.6734 0.6566 8.1153
VIF w=proposed MSA 0.6946 0.6959 7.8968

VQA compared to local saliency pooling. This shows that
motion saliency is beneficial for VQA metrics providing a
better agreement with the subjective ground-truth scores.
However, saliency weighted methods still cannot outperform
MOVIE [9], which employs a complex HVS based model for
exploiting temporal and distortions. Our proposed method
does not seek to explicitly model properties of the HVS, how-
ever it is competitive with MOVIE, especially for the case
of MSA-weighted MS-SSIM, even though it avoids computa-
tionally complex optical flow estimation or multi-scale filter-
ing over large temporal trajectories. To examine the effect
of our proposed weighting on different distortion types, we
show in Table 2 the performance enhancement, in terms of
Spearman Rank Order Correlation Coefficient, for our pro-
posed method for each distortion class separately. As ex-
pected, our proposed method contributes on average more
in cases of transient distortions (in the presence of packet
losses, classes 1&2) compared to cases with uniformly dis-
tributed distortions (no packet losses, classes 3 & 4).

4. CONCLUSIONS
In this paper we have provided a novel motion saliency esti-
mation method for video sequences considering the motion
between successive frames, and their corresponding para-
metric camera motion representation, for VQA. The pro-
posed saliency maps are incorporated in the spatial pooling
stage of several video quality metrics. Experimental eval-

Table 2: Performance enhancement in terms of
SROCC for our proposed method on LIVE database

# Distortion class MSE SSIM MS-SSIM VIF

1 H264 + wireless -0.0291 0.1328 0.0638 0.1538
2 H264 + IP 0.1139 0.1166 0.0206 0.1326

average (#1,#2) 0.0424 0.1247 0.0422 0.1432

3 H264 0.0251 0.1099 0.0901 0.1546
4 MPEG2 0.0238 0.1110 0.0662 0.0463

average (#3,#4) 0.0245 0.1105 0.0782 0.1005

All data 0.0202 0.1103 0.0490 0.1662



Figure 2: Example frames of four sequences of the LIVE database. Reference frames Rn and the corresponding
motion saliency maps MSAn (first and second rows respectivelly).
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Figure 3: Scatter plot of predicted DMOS using stan-

dard MS-SSIM and weighted MS-SSIM using the pro-

posed method (blue and green marks respectively) ver-

sus DMOS. Evaluation on LIVE video database.

uation on the LIVE video database has shown that thus,
objective metrics are more closely in accordance with the
subjective ground-truth scores, which is an indicator that
motion saliency can be beneficial for VQA. Motion saliency
aware temporal pooling and consideration of more neighbor-
ing frames remain interesting topics for future exploration.t
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