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ABSTRACT

We describe an active depth imaging system based on phase
measuring triangulation. Typically depth-maps generated
with such 3D scanning systems suffer from occlusions and
imperfections, especially in the vicinity of depth discontinu-
ities. Applying multiple color images, captured with a camera
array, for view synthesis from the erroneous depth-maps can
result in severe texturing artifacts. Our consensus-based ap-
proach greatly reduces these artifacts by comparing the sim-
ilarity of the multiview texture images during the blending
process to detect outliers in the form of foreground texture
projected on background surfaces and specular ambiguity.
Additionally, the approach is applied to dramatically improve
the depth-maps by generating multiple depth-map hypotheses
and selecting the areas of each that have the highest consen-
sus with the set of multiview texture images. Our approach
yields accurate and occlusion-free depth-maps in real-time.

Index Terms— 3D Scanning, Structured Light, Free
Viewpoint Video, Multiview, View Synthesis

1. INTRODUCTION

The television and movie industry has always striven to cre-
ate a more realistic and more immersive experience by con-
tinuously improving the quality of video and sound. A few
years ago digital capturing and digital display technologies
have made high quality stereoscopic 3D possible at home and
in the theaters. The next logical step are autostereoscopic
multiview displays that do away with 3D glasses and avoid
visual discomfort [1]. These displays require not just two but
five to thirty input views, all with the highest degree of image
alignment with respect to parallax and colorimetric proper-
ties. Next generation free viewpoint displays and holographic
displays will even call for a number of input images in the
range of thousands. These displays will create the impres-
sion of viewing a scene through an actual window and not on
a flat display. While it is to a certain extend possible to di-
rectly capture a number of input views with a synchronized
and properly aligned multi-camera array [2], holographic dis-
plays would require light field cameras [3] with a wide maxi-
mal camera baseline in order to allow viewers to immerse in

a scene from a perspective of their choosing. Recording such
imagery directly, quickly becomes infeasible.

This work demonstrates capturing entire 3D models of a
scene at video frame rates. Sufficient quality provided, the
3D models, along with several synchronously captured color
images, can serve as mediators to render any number of high
quality views for arbitrary viewpoints, as suggested in [4].
For this reason, we have addressed two key challenges. The
first being the removal of errors in the depth-maps while ad-
ditionally filling all remaining occlusions within the depth-
maps as illustrated in Fig. 3. Even after one or multiple depth-
maps have been filtered, completed and combined to a geo-
metric model, the resulting 3D data will most likely contain a
multitude of small and large errors. Subsequent texturing with
multiview color imagery will reflect these errors in the form
of texture-artifacts. Our consensus-based texturing and depth-
map completion method addresses both these problems.

2. RELATED WORK

The underlying capturing and 3D reconstruction system de-
scribed in this paper is based on phase measuring triangula-
tion (PMT). PMT falls within the category of structured light,
an active stereo image matching technique that measures the
deformation of a known light pattern after it is reflected from
the scene and captured with a camera [5] [6] [7]. A concise
summary of structured light patterns is given by Salvi et al.
[8]. In contrast, passive stereo image matching techniques
apart from Structure from Motion [9] or Depth from Defocus
[10] approaches, require two or more cameras and rely solely
on ambient light. Passive techniques suitable for real-time re-
construction at video frame rates include i.e. guided image
filtering [11] and hybrid recursive matching [12]. A concise
overview is given in [13] and most notably in the Middlebury
dataset [14]. Development towards multiview reconstruction
is accounted for in [15].

3D reconstruction via PMT has been demonstrated in
[16]. An extension of the method to allow for motion com-
pensation and the scanning of discontinuous objects has been
demonstrated by Weise et al. [17]. A four pattern phase
shift with an integrated binary coding scheme is applied by
Wissmann et al. in [18].
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3. CONSENSUS-BASED TEXTURING

Once a preliminary depth-map has been calculated (Fig. 1a)
the resulting 3D model M can be textured. Texture images
are uploaded to the GPU in a compressed raw Bayer eight bit
per pixel format and are then converted to RGB on the GPU
for fast processing [19]. The OpenGL / GLSL environment on
the GPU allows for efficient shadow mapping (Fig. 1d), given
M, for each c-th texturing camera c = [1, . . . , N ]. Without
shadow maps s, direct projective texturing will fail and result
in double or triple texturing, as indicated in Fig. 1c.

s ∈ RN with s(c) =

{
0 : shadowed
1 : visible

(1)

Subsequently, shadowed regions are textured with one (Fig. 1e)
or all remaining color images but erroneous depth disconti-
nuities (Fig. 1b) result in texturing artifacts (Fig. 1f). Direct
averaging of all overlapping textures can only conceal these
errors partially (Fig. 1g). Thus, we calculate a consensus vec-
tor ac to detect which texture is causing the error in a small
window with k = 2 around each fragment

ac = sc

k∑
∆x=−k

k∑
∆y=−k

Γc

(
xc
wc

+ ∆x,
yc
wc

+ ∆y

)
(2)

and an error metric bc formulated by Eq. 3 and Eq. 4

bc = sc

∣∣∣∣∣∣ 1

N

N∑
c=1

(ac)−
k∑

∆x=−k

k∑
∆y=−k

Γc

∣∣∣∣∣∣ , (3)

Γc (x, y) = [L(x, y), a(x, y), b(x, y),m′(x, y)]
′
, (4)

where L, a, b refer to the CIE 1976 (L∗, a∗, b∗) color
space transform of the RGB textures. m(x, y) denotes the 3D
coordinate seen at the respective pixel locations of the c-th
camera. bc is low if colorimetric features Γ1:3 and the geo-
metric features Γ4:6 align with the mean consensus in Eq. 2.
The last three elements Γ4:6 assert that texels at depth discon-
tinuities will be selected as outliers if the majority of texels
target a geometrically smooth surface. The pixel-coordinates
for each fragment in the c-th camera are given byxcyc

wc

 = Pcm ∀m ⊂︸︷︷︸
visible

M. (5)

Here Pc is the c-th camera’s projection matrix, with Pc =
Kc [Rc|tc]. Kc represents the respective camera’s intrinsic
matrix, Rc the rotation matrix and tc the translation vector,
while wc is applied for coordinate normalization in Eq. 2. Ge-
ometrically, the cameras and projectors in the array are cali-
brated fully automatically in a common world coordinate sys-
tem with the method we have described in [20].

Texels with a maximum bc,max are selected outliers, as
shown in Fig. 1h, if bc,max > 2σb, where σb is the standard
deviation over all bc. Texels of the remaining subset of cam-
eras are then weighted based on the distances of their respec-
tive camera centers Cc = −Rc

′tc from the 3D coordinate m
assigned to the fragment, yielding a far better blending result
as shown in Fig. 1i.

Color-coded depth map (red: near, blue:far) Depth edges (red) on monochrome image Projective texturing with a single color image

Projective texturing with shadow mapping Shadowed regions filled with 2
nd

 color image Shadowed regions filled with all color images

All unshadowed textures blended directly Consensus detects texture ourliers (red) Blending with wrong outlier texture disabled

a b c

d e f

g h i

Fig. 1. Consensus-based texturing with multiview images and
an imperfect depth-map.

4. DEPTH ESTIMATION AND DEPTH-MAP
COMPLETION

Our 3D scanning system is based on phase measuring trian-
gulation which allows for a good balance between geometric
accuracy and data density. We sequentially project two phase
shifted sinusoidal triplets – one with just one period and one
with N = 32 periods. The later is converted to a modulo
2π wrapped phase Φ′h. Absolute phase recovery is performed
by utilizing the low frequency patterns for guided phase un-
wrapping with the low frequency phase Φ′l. In practice it is
beneficial to apply a denoising filter to Φ′l to remove outliers.
This is achieved by bilateral filtering of Φ′l, as described by
Shi and Tomasi in [21], and by removing pixels with large
gradients in x or y. Epipolar constrained triangulation yields
the final 3D reconstruction, while four color cameras provide
additional texture as summarized in Fig. 2. For more details
regarding the 3D reconstruction process, we refer to our pre-
vious work [22].

Once all camera pixels that capture light reflected from the
scene by one of the projectors are filtered and converted to a
3D point cloud, the point cloud is converted to a mesh in the
form of a continuous triangle strip in which three neighbor-
ing camera pixels containing vertices create a triangle if the
longest edge of that given triangle is below a certain thresh-
old, depending on the resolution and placement of the cam-
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eras and the projectors. In our case this threshold is usually
a few millimeters. The resulting mesh is re-converted to a
depth-map (Fig. 3a) for each c-th camera with depth values
dc(x, y) given by the distance of the visible 3D point m(x, y)
from the respective camera center Cc

dc(x, y) = |Cc −m(x, y)|. (6)

In the hole filling process we first approximate the correct
depth discontinuities by slightly dilating foreground objects
in a small window with k = 1, so that and x′, y′ ∈ {−k, 0, k}.

dc,min (x′, y′) = min(dc(x+ x′, y + y′)). (7)

In order to remove spherical distortions of the dilated depth-
map, we calculate two vectors for the fragments at (x, y) and
the pixel location of dc,min

a∗ = Rc
′Kc

−1[x, y, 1]′

b∗ = Rc
′Kc

−1[x+ x′, y + y′, 1]′.
(8)

These vectors are then normalized to homogeneous direc-
tional vectors, pointing from the origin of the world coordi-
nate system to the z = 1 plane in the rotated but untranslated
camera, with a = a∗

/a∗
z and b = b∗

/b∗z. The relationship of
length between the two vectors provides the required factor
by which the found minimum depth value dc,min has to be
multiplied, resulting in the new depth

dc(x, y) =
|a|
|b|

dc,min (x′, y′) . (9)

In a similar fashion the remaining unknown regions are
considered as background by find the maximum depth value
within a larger neighborhood with k = 100. Formulating this
as a separable problem in horizontal and vertical direction we
yield a linear computational complexity of O(2n) as com-
pared to O(n2). Under the assumption of missing regions in
the depth-map being no larger than 2k pixels in horizontal or
vertical direction we achieve convergence for a [1280×1024]
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Fig. 2. Our phase unwrapping procedure for active 3D
scene reconstruction, showing corresponding projected im-
ages (left) and captured images (right). The resulting epipolar
constrained 3D reconstruction is shown in the center. Four
color images provide additional texture for view synthesis.

depth-map in a single iteration, by searching along the hori-
zontal direction first and then filling the depth-map vertically.
Since the second vertical pass utilizes but overwrites filled
depth values estimated in the previous pass, we consider the
vertical direction as the dominant one in this case (Fig. 3b).

Region growing with horizontal dominance

Area selection (green Fig. 1b, red: Fig. 1c) 

Region growing with vertical dominanceTypical input depthmap of a range sensor

Consensus-based depthmap completion

a b

d e f

Consensus-based multiview texturing

c

Fig. 3. Consensus-based area selection for depth-map com-
pletion (one camera, one projector) and subsequent multiview
texturing with all available color information.

A second pass of the occlusion filling stage, with orthog-
onal directional dominance compared to the previous run, al-
lows for an alternative version of the completed depth-map
(Fig. 3c). Both depth-maps then have multiple different erro-
neously and correctly estimated regions. Applying the tech-
niques of consensus-based texturing, we can evaluated for
which part of which depth-map the participating texture im-
ages align better (Fig. 3d). The binary absolute difference ∆
between the two depth-maps with ∆ = b|Ψx −Ψy|c is ef-
ficiently segmented into connected components Si [23] after
which the individual fractions of each depth-map can be allo-
cated to the final result in Fig. 3e, so that each fragment f is
given by:

Ψ =

{
Ψx : Ny > Nx

Ψy : else
(10)

withNx andNy given asNx,y =
∑
∀f∈Si⊂Φx,y

(fo + fs),
while fo and fs denote the presence of an outlier texture or a
shadowed fragment in the consensus-based texturing stage,
respectively. Likewise, the selection provided by Eq. 10 is
applied to create the improved textured view in Fig. 3f without
the computational effort of a subsequent rendering pass.

5. DATA CAPTURE OVERVIEW

The system that we use for data capture is comprised of two
Viewsonic PJD6241 120 Hz DLP projectors and two Basler
A504k high speed cameras. Four Basler Scout scA1300-32gc
color cameras provide texture information. Two of these,
along with one projector and one high speed camera form a
scan unit, as depicted in Fig. 4.

2128



The complete 3D scanning system

High speed camera

Projector 1

RGB 
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computer
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control

Video / Vsync

Capture data Trigger

Control

Camera Link / GigE Vision out

A single scan unit

Fig. 4. The complete 3D scanning system (top-left), com-
prised of two identical scan units (bottom-left). The block di-
agram to the right illustrates the system’s signaling flow path.

The periodic, time-multiplexed 12 frame structured light
sequence is continuously analyzed by an external Atmel
EVK1100 AVR32 microcontroller, in order to maintain trig-
ger synchronization with the camera array. The currently
used primary workstation for performing 3D reconstruction
and view synthesis is based on a quad 3.2 GHz Core i7 and
a Nvidia GTX680 graphics card. Configuring the cameras
to capture structured light from both projectors, results in
two additional wide base line camera-projector pairs. This
yields a total of four pairs which capture simultaneously, each
contributing to the 3D reconstruction as illustrated in Fig. 5.

Fourth textureThird textureSecond textureFirst texture

Projector 1 Projector 2

Camera 1 Camera 2

Texture 1 – 4

Fig. 5. Color-coded multiview reconstruction illustrating the
resulting gain in terms of reconstruction completeness with
up to four camera-projectors pairs. The four texture images
of this setup are shown above.

6. TIMING OVERVIEW

Averaged per frame timing diagrams for complete reconstruc-
tion and view synthesis with the presented system are illus-
trated in Fig. 6. The resolution of the depth-maps is 1280 ×
1024, the resolution of the four images applied for texturing in
the consensus-stage is 1294×964. An OpenGL / GLSL based
GPU implementation allows the method to be real-time capa-
ble. Currently, a complete reconstruction and rendering cy-
cle accumulates to 79.5 ms. Image capturing from the multi-
camera array is performed by the CPU in parallel. The time
necessary for 3D reconstruction (7 ms) could be neglected
with a dedicated depth-imaging device, such as a Time of
Flight camera or a Microsoft Kinect.
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Fig. 6. Averaged per frame timing diagrams for complete 3D
reconstruction, showing the accumulative sum over all pro-
cessing steps (left) and their individual timing details (right).

7. CONCLUSION

We have presented work on the completion of depth-maps and
subsequent consensus-based multiview texturing of the geo-
metric 3D models built from the depth-maps. Our work is ap-
plicable to general depth imaging devices, such as Microsoft’s
Kinect sensor, not just to our own 3D scanning structured
light array. As has been shown, the consensus-based approach
for texturing 3D models with images captured from multiple
viewpoints provides good visual results. Additionally, the ap-
proach can be applied for further refinement and for occlusion
filling of the depth-maps in a way that lets the textures on the
resulting 3D models align properly. Our method is real-time
capable and thus allows for interactive systems and applica-
tions. We believe that our approach of creating intermediate
textured 3D models of a scene on a frame by frame basis and
then rendering from these models to virtual cameras, or an
entire virtual light field, will become a powerful way to real-
ize the extreme high number of input views necessary for next
generation full parallax and holographic displays.
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