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Abstract—These days the sharing of videos is very popular
in social networks. Many of these social media websites such
as Flickr, Facebook and YouTube allows the user to manually
label their uploaded videos with textual information. However,
the manually labelling for a large set of social media is still boring
and error-prone. For this reason we present a algorithm for cat-
egorisation of videos in social media platforms without decoding
them. The paper shows a data-driven approach which makes
use of global and local features from the compressed domain
and achieves a mean average precision of 0.2498 on the Blip10k
dataset. In comparison with existing retrieval approaches at the
MediaEval Tagging Task 2012 we will show the effectiveness and
high accuracy relative to the state-of-the art solutions.

Index Terms—Genre classification, bag of words, compressed
domain features

I. INTRODUCTION

The possibilities arising from new technologies (such as
Web 2.0) facilitate significantly the production and dissem-
ination of new content. Automatic classification of videos
enables users to easier find the desired content by categorising
them into semantic categories or genres. Manual annotation is
laborious due to the huge amount of newly generated data.

Our contribution to that is a framework that is able to
classify user-generated video sequences into several thematic
topics without decoding the video stream. This omission
of the decoding procedure results in a reduction of the
processing time. For our investigations we use the Blip10k
dataset [1] which was developed within the MediaEval 2012
benchmark 1. This dataset consists of 14,838 videos gathered
from blip.tv included with shot boundary information [2].
This shot segmentation was carried out automatically by a
software implementation which is not necessarily perfect. The
videos are exclusively divided into 26 categories—chosen by
its uploader—which are named in Figure 2 and cover a broad
range of topics and styles. These videos’ categories reflect
rather a thematic topic than a genre; therefore an allocation
to a specific category only based on visual features is a very
hard task.

1http://www.multimediaeval.org/mediaeval2012/
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This work is an extension to our MediaEval 2012 Tagging
Task [3] participation, there we classified these videos into
these categories using bags of features derived from visual
content and associated textual metadata, but here we focus
only on visual features extractable from the compressed do-
main. Therefore, we analysed 158,446 key frames extracted
from videos of the development set, the test set has 261,418
key frames respectively. The results of the subsequent classi-
fication of proposed features are then compared against each
other and other approaches using pixel domain features.

As global features extracted from the compressed domain,
we apply Colour and Edge Directivity descriptor (CEDD) [4]
and Tiny Image descriptor described in [5], but using the
CIELAB colour space on the reconstructed mini images.
The discrete cosine transform (DCT) coefficients of each
key frames are used as local features. The key frames are
beforehand scaled in compressed domain to the same size.

This paper is structured as follows. In the next section,
we cover the related work. We introduce our approach using
features extracted from the compressed domain in section III.
The results are shown in section IV and we finish with a
conclusion summarizing our main findings.

II. RELATED WORK

In recent works, a common approach for categorization is
to employ global features to represent genres and categories.
Ionescu et al. [6] applied global visual features to recog-
nize video genres in broadcast material. Their multi-modal
approach—audio, temporal and contour features were also
used—achieved a very high accuracy on a database of 91 hours
of TV programmes. They notice that heterogeneous content
in certain genre led to lower accuracies than for content
that have repetitiveness in their structure. In their approach
binary classifiers were trained for each single genre, and then
combined to a multi-genre decision using the majority voting
rule. They investigated three classification methods—namely
support vector machine (SVM), nearest neighbour (NN) and
linear discriminant analysis—and concluded that the use of
SVM lead to the best results.

Ekenel et al. [7] tested their approach with TV material, but
also with user-generated content on YouTube and concluded
that the results are not significantly influenced by the lower



image quality. Their multi-modal framework that used audio-
visual cues as well as cognitive and structural information
achieved a high classification accuracy (CA) of 92% for web
videos with typical broadcast genres. The authors used a set
of binary classifier to obtain multi-genre decisions. A support
vector machines with RBF kernel was trained per each genre
and feature, and finally the decisions were combined.

These previous works used features extracted from the
pixel domain. Girgensohn and Foote [8] were the first who
apply principal component analysis (PCA) with transform
coefficients on shot frames for video genre classification.
Wang et al. [9] surveyed various visual descriptors extractable
from a compressed MPEG-1/2 stream. We showed in [10]
the effectiveness of such features in the domain of classifying
broadcast video streams. Web videos are typically not encoded
in MPEG-1/2 but in H.264. Since our web videos are encoded
in Ogg Theora, it is possible to adopt these descriptors to be
able to extract feature from these types of web videos.

The use of visual words generated from compressed domain
local features is presented in Sui et al. [11]. They showed an
approach that reconstructed mini images by partly applying
inverse DCT to the first few DCT coefficients of the lumi-
nance colour channel. On these mini images, scale-invariant
feature transform (SIFT) features had been extracted and then
clustered. The results of their binary image classification is not
necessary worse than classifications of fully decoded images.

In contrast to Sui et al., we extract features directly from
DCT coefficients. In order to obtain scale-invariant words,
arbitrary resizing of intra-coded images in DCT space is
required which was recently presented by Mukherjee and
Mitra [12].

III. METHODOLOGY

Our proposed framework extracts visual features from the
compressed domain of shared media. The provided video
sequences of this dataset are encoded in Ogg Theora codec 2.
This codec has two types of coded frames (intra and inter
coded). In order to reduce the temporal dimensionality of the
video sequences we use intra-coded frames temporally close to
key frames determined by the shot boundary detection. These
frames are used to generate mini images on which global
colour features are extracted. The local features are extracted
from DCT coefficients of the Y colour channel at a regular grid
using five different approaches. The characteristics of the video
sequences are then presented using the bag-of-words (BoW)
approach for local features. In contrast, the global features are
directly fed into the subsequent classifier.

The flowchart of our approach is shown in Figure 1 and is
described more precisely in the next subsections.

A. Global visual features

Intra coded frames carries all the image information which
can be easily restored using the inverse DCT, but this process-
ing step can be omitted if coarser resolutions are sufficient

2http://www.theora.org/

enough. An example where is coarse image resolution is
sufficient is the Tiny Image descriptor that anyhow downscales
images to 32×32 pixels. The Tiny Image descriptor represents
the colour information of each pixel as feature vector, typically
the RGB colour space is used, but we employ the more
perceptual-adapted colour space CIELAB. The intra frame
consists of multiple 8×8 DCT blocks for each colour channel,
whereas each 0th (DC) coefficient carries the average colour
information for the respective 8×8 pixel segment. Thus, mini
images can be generated by treating each 0th DCT coefficient
as the colour value for a pixel—after a proper range adoption.
So, the resolution of the mini images is one-eighth of its
original size. We extract global visual features, namely Tiny
Image [5] and Colour and Edge Directivity Descriptor [4] from
these reconstructed mini images. In previous work [13], we al-
ready compared the effectiveness of several global descriptors,
therefore we choose for these two.

B. Visual Words Generation

We not only focus on global features but also on densely
sampled DCT-based local features to enable our approach
presented in [14] to work on this much larger dataset. In
order to obtain square images tiles with a length of 5 % of
the image width, the number of DCT blocks of each frame
is proportionally reduced to 20 horizontal blocks. From each
block a description is extracted as described in section III-B2.
Once the local feature vectors are extracted, the visual word
generation is performed by vector quantisation of decorrelated
features.

1) Frame Resizing without Decoding: In order to obtain
scale-invariant densely sampled visual words, the intra-coded
key frame is proportional scaled to a fixed size by using
a method initially proposed by Jiang and Feng [15] which
was then refined by Mukherjee and Mitra [12]. Whereby the
scaling is performed in DCT space, so the frame need not
to be decoded beforehand. The basic idea is to recompose
or to decompose spatial adjoining DCT blocks, and then
performing a subband filtering of the coefficients. According
to Mukherjee [12], image downscaling is equivalent to a
recomposition of a block from L × L adjacent N ×N -point
DCT blocks, where L is the downscaling factor:

DLN×LN = AL,N

∣∣∣∣∣∣∣
DN×N

0,0 · · · DN×N
0,L−1

...
. . .

...
DN×N
L−1,0 · · · DN×N

L−1,L−1

∣∣∣∣∣∣∣AT
L,N . (1)

Subsequently, the LN×LN -point DCT block DLN×LN needs
to be subsampled with following equation:

DN×N (u, v) =
DLN×LN (u, v)

L
, for u, v = 0, . . . , N − 1.

(2)
Image upscaling operates similarly, here a MN×MN -point

DCT block is computed from a N ×N -point DCT block by
inverting equation 2. This MN ×MN -point DCT block is
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Fig. 1. Flowchart: Visual features are extracted from DCT coefficients derived from intra-codec key frames.

then decomposed into M ×M blocks of size N ×N each:∣∣∣∣∣∣∣
DN×N

0,0 · · · DN×N
0,M−1

...
. . .

...
DN×N
M−1,0 · · · DN×N

M−1,M−1

∣∣∣∣∣∣∣ = A−1M,NDMN×MNA−1M,N

T
,

(3)
where M is the upscaling factor.

Both scaling factors L and M are integer values, resizing
with rational factors (e.g. M

L ) is achieved by performing a
upscaling with the integer M and then a downscaling by
L, as described in [12]. The transformation matrix AK,N is
determined by

AK,N =

√
2

NK2

(
BK,NCT

K,N

)
. (4)

The elements of B are calculated by

B(k, n) = a · cos (2n+ 1) · k · π
2KN

for k, n = 0, . . . ,KN − 1,

where a =

{ 1√
2

if k = 0

1 otherwise
.

The elements of C are calculated by

C(k +m ·K,n+m ·K) = a · cos (2 · n+ 1) · π · k
KN

for k, n = 0, . . . , N − 1 and m = 0, . . . ,K − 1,

where a =

{
1 if k = 0√
2 otherwise

.

These formulas guarantee arbitrary sizes of visual words, the
description of those is described in the following section.

2) Description using DCT Coefficients: Each DCT block
is now treated as a visual word, its description is generated
by five different methods using the coefficients D of a DCT
block of the Y colour channel, respectively its zigzag scanned
version d. We investigate different methods of generating
descriptions since the different handling of DCT coefficients
results in different charateristics. Visual word descriptions that
do not consider the 0th coefficient (u = v = 0) should be
invariant against uniform luninance offset, while descriptions
with absolute values of the coefficients should be invariant
against its mirrored versions.

a) Quantised Coefficients: The feature vector is created
by quantising the DCT coefficients D(u, v) using the standard
JPEG quantisation matrix Q [16]:

Q =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


. (5)

The quantisation is then

Dq(u, v) = Q(u, v) · round
(
|D(u, v)|
Q(u, v)

)
. (6)

The resulting feature vector fa consists of the zigzag scanned
and quantised absolute values of coefficients dq . So this
feature vector is invariant to mirrored versions of the respective
image section.

b) AC Coefficients: The feature vector created with this
method simply consists of the zigzag scanned absolute values
AC coefficients of a DCT block d, therefore it is invariant
against luninance offsets:

fb(p) = |d(p+ 1)|, for p = 0, . . . , 62. (7)

c) Logarithmic AC Coefficients: Feature vector fc is
created as proposed by Sim et al. [17] but applied on a single
DCT block only. Sim et al. [17] report good retrieval results
applying this method. Here the first zigzag scanned 51 AC
coefficients are used to generated the description:

fc(p) =

{
log(|d(p+ 1)|) if d(p+ 1) > 0

0 otherwise , for p = 0, . . . , 50.

(8)

d) Pairwise averaged Coefficients: This feature vector
is created by pairwise averaging each element of the upper
triangular matrix of D with its’ transposed element, therefore
the feature is invariant against rotation by multiple of 90:

fd(p) = 0.5 · (Dq(u, v) +Dq(v, u)) , for u, v = 0, . . . , 7

and p = u+ 8v − 0.5(v2 + v).
(9)



e) Diagonalised averaged Coefficients: Feature vector fe
is here created by averaging all elements of D lying on a
diagonal according to the zigzag scanning scheme.

fe(p) =
1

vp+1 − vp

vp+1−1∑
i=vp

fa(i), for p = 0, . . . , 14

v = {0, 1, 3, 6, 10, 15, 21, 28, 36, 43, 49, 54, 58, 61, 63, 64} .
(10)

3) Vector Quantisation: The visual vocabulary Vvis is built
from quantised feature vectors, since clustering is a time
consuming step in BoW approaches. We introduce an approach
for generating BoW histograms which does not require any
clustering procedure. The straight forward method of vector
quantisation is problematic, since the number of cells growths
exponential with the dimensionality of the feature. A uniform
quantisation of a descriptor with d dimensions would lead to
qdl code words, where ql is the number of quantisation levels.
We tackle that problem by decorrelating the feature vectors
and then quantifying each dimension separately. Therefore,
we transform the features into a feature space with zero
mean and a variance of one. This transformation is performed
using principal component analysis of the covariance matrix
C = F · FT for the corresponding features F:

Λ = V−1CV, (11)

where Λ is the diagonal matrix of the eigenvalues λ and V
as corresponding eigenvectors. Each single description Fi is
then transformed by Fi,pca = VT · Fi. Each dimension is
in a different scale, depending on their impact on the total
variance. In order to obtain features with unit variance, the
transformed descriptor is scaled by 1√

λj

, where j is the index

of the dimension. Divisions by zero are avoided by adding a
small term ε = 10−6 to each eigenvalue λ.

Fwhite = VTF (Λ + ε I)
−1 (12)

The result of this transformation is a feature space with zero
mean, unit variance and decorrelated dimensions, since the
covariance matrix is set to the identity matrix I. Now, the
features can be quantified using the 3σ rule, so the range to
be quantified is set to [−3; 3]. For a uniform quantization,
the quantization step is subsequently to qs = 6

ql
, where ql

is the desired quantization levels for each dimension. The
amount of codewords depends on the quantization level ql and
dimensionality d of the feature: |vvq| = ql ·d. Each visual word
of a feature Fi is determined by cbj = ql ·

(
j +

Fwhite,i,j+3
6

)
,

∀j ∈ 0, . . . , d− 1. Since the feature dimensions are linear
independent, each feature vector Fi ∈ Rd generates d visual
words.

C. Classification & Fusion

The BoW histograms are classified with a multi-class SVM
with histogram intersection (HI) kernel and cost parameter
C = 1. The classification into multiple genres is obtained

using the one-vs-one strategy and the majority voting rule.
The HI kernel is defined by

κ(x,y) =
∑
i

min(x(i), y(i)). (13)

The feature vectors of the global features are whether clas-
sified with a SVM with linear kernel (κ(x,y) = xTy) or
using the k-nearest neighbour approach and k-d trees. The
results achieved with a single descriptor are then combined
in late fusion manner using the weighted voting rule. So,
each classifier output is treated as a vote to a certain category
which is weighted with its normalised average precision to
that category.

IV. EXPERIMENTS

This section contains the experiments to show the perfor-
mance of different visual features extracted from compressed
domain. These experiments are carried out on the Blip10k
dataset [1] that comprises 5,288 videos (158,446 shots) in
the development set and 9,550 videos (261,418 shots) in the
test set. This dataset contains almost randomly chosen social
videos belonging to one of the 26 categories depicted in
Figure 2 without concerning the video content or correctly
tagged videos. The scenario is to predict the user-chosen
category on blip.tv, including the default category that means
the uploader does not choose any category. This “real world”
dataset does not have a balanced distribution of categories, i. e.
half of the video within this dataset belongs only to one of the
five categories: default category, politics, technology, music
& entertainment, or educational. Based on this unbalanced
dataset, the mean average precision (mAP) is chosen as
measurement for evaluation, although each video is classified
to a unique category. The use of classification accuracy as
evaluation measurement is not informative enough to evaluate
classifiers for this dataset. Since the distribution of categories
is unbalanced, a classifier predicting only the default category
would lead to a CA of 0.1623, but to a mAP of 0.0068.
The evaluated results of our local descriptors quantised with
different quantisation levels into visual words are shown in
Table I.

TABLE I
RESULTS OF DIFFERENT LOCAL DCT-BASED FEATURES WITH DIFFERENT
QUANTISATION LEVELS (IN MAP). A SVM WITH HI KERNEL IS USED AS

CLASSIFIER.

Local feature VQ16 VQ32 VQ64
quantised coeff. (fa) 0.1213 0.1242 0.1307
AC coeff. (fb) 0.1058 0.0985 0.0920
log AC coeff. (fc) 0.1178 0.1212 0.1202
pairwise avg. coeff. (fd) 0.1172 0.1180 0.1181
diagonalised avg. coeff. (fe) 0.1035 0.1095 0.1199

These local descriptors fa−e described in section III-B2 are
vector quantised with the quantisation levels ql = 16, 32, 64
and a BoW histogram is generated from the resulting visual
words for each video sequence. These BoW histograms are
then classified using a set of SVM with histogram intersection
kernels. As shown in Table I, the best result is achieved using



the fa local descriptor that consists of all DCT coefficients
quantised with the standard JPEG quantisation matrix. A
mean average precision of 0.1307 is obtained by visual words
generated by vector quantisation with ql = 64. The different
local descriptors have different trends for scaling with the
quantization level. In general, finer-grained vector quantisation
lead to more discriminate feature spaces and result in higher
precisions.

In the following, the global visual descriptors are described
that extract their features from the compressed domain.
TinyCEDD: The Colour and Edge Directivity descriptor

extracts its features from reconstructed mini images converted
into RGB colour space. Each feature vector is separately
classified using k nearest neighbour (k = 6) algorithm and
a k-d tree. A decision for the whole video sequence is then
obtained using consensus voting rule.
TinyLab is the Tiny Image descriptor. This feature is

extracted from the reconstructed mini image downscaled to
32× 32 pixels and converted into CIELAB colour space. The
feature vector is reduced using principal component analysis
to 900 dimensions, and then classified using SVM with linear
kernel. Here the features vectors of each video sequence are
averaged beforehand.

TABLE II
RESULTS ACHIEVED WITH GLOBAL COMPRESSED DOMAIN FEATURE AND

THEIR FUSION WITH THE LOCAL ONES.

Feature Classifier mAP
TinyCEDD k-Nearest Neighbour (k = 6) 0.1466
TinyLAB SVM, linear Kernel 0.1124
Fusionwv weighted voting 0.2498

Table II shows the results of these global visual descriptor.
Among these both feature, the tiny version of CEDD achieves
the higher mean average precision. All results can be also
compared to the lower bound mAP achieved by random
guessing (mAP = 0.0026) or choosing the predominant
default category (mAP = 0.0068).

The average precision for each category of each single
descriptors mentioned above is shown in Figure 2. It is shown
that classifiers perform differently for the single categories,
and therefore a combination of these classifier to a single sys-
tem is reasonable. As depicted, the category autos & vehicles
is distinguished best; an average precision of AP = 0.7692
is achieved. Whereas, the recognition of categories, such as
personal or auto-biographical, travel, or web development &
sites, is quite low—almost 0. The reason is seen in the visually
indistinguishable content; personal or auto-biographical and
travel are sub topics of documentary, while web development
& sites videos look very similar to those belonging to tech-
nology.

Contrary to earlier investigations [14], global features
achieves remarkable precisions compared to the local ones.
A possible reason for relatively worse performance of these
local features is the lack of rotation invariance in their current
configuration. The result of our compressed domain features
can be improved by combining them. In late fusion manner

using the weighted voting rule, a mean average precision of
0.2498 is then achieved, labelled as “Fusionwv” in Table II
and in Figure 2. This figure depicts that this fusion achieves
at least an AP of 0.1 for almost every single category. The
best distinguished category remain autos & vehicles, same for
the worst—travel. Finally, every third decision (36.5%) made
on these 9,550 videos was right.

TABLE III
OUR FUSION RESULT IN COMPARISON TO OTHER APPROACHES USING

THAT DATASET AND TWO BASELINES METHODS.

Feature mAP
our fusion local+global visual 0.2498
UniCamp (from [1]) global visual 0.1238
ARF (from [1]) global visual, audio 0.1941
baseline 1 random 0.0026
baseline 2 default category 0.0068

Our fusion result achieved with global and local features
extracted compressed domain is now compared to other ap-
proaches using that dataset. These results are listed in [1] and
were achieved within the MediaEval 2012 Tagging Task. The
purely data-driven approaches within this campaign came from
the participants UniCamp and ARF. While UniCamp used a
histogram of spatio-temporal motion patterns achieving a mAP
of 0.1238, ARF used miscellaneous global colour descriptors
resulting in a mAP of 0.1941. Compared to these results, our
fusion result is remarkable considering that video sequences
need not decoded for our approach. The results achieved in
terms of mAP are shown in Table III.

V. CONCLUSION

The BoW approach proposed in this paper uses vector
quantisation of decorrelated local features to avoid the time-
consuming clustering procedure within generation of the visual
words. The proposed approach only requires the compressed
stream (but Huffman decoded) of video sequences from those
the local and global visual features are extracted. The best
proposed local descriptor uses all 64 coefficients quantised
with the standard JPEG quantisation matrix of scaled DCT
blocks. Our best result of mAP = 0.2498 is achieved by
combining various classifier using local and global visual
features. As already shown in a previous publication [14],
the classification result on user-generated content can be
significantly improved by including textual metadata.

In future work we will spend more effort in making our local
descriptors extracted from DCT coefficients rotation invariant.
We will also extent our BoW model by using hierarchically
structured BoW histogram.
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