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ABSTRACT

In many computer vision applications local optical flow meth-

ods are still a widely used. Such methods, like the Pyramidal

Lucas Kanade and the Robust Local Optical Flow, have to

address the trade–off between run time and accuracy. In this

work we propose an extension to these methods that improves

the accuracy especially at object boundaries. This extension

makes use of the cross based variable support region gener-

ation proposed in [1] accounting for local intensity disconti-

nuities. In the evaluation using Middlebury data set we prove

the ability of the proposed extension to increase the accuracy

by a slight increase of run time.

Index Terms— Optical Flow, KLT, RLOF, Feature Track-

ing, Cross-based region construction

1. INTRODUCTION

In a wide area of video-based computer vision applications

motion information has become an important cue. The con-

cept of optical flow formulates the base of the most common

motion estimation approaches, not at least because the accu-

racy and efficiency of these techniques have been substan-

tially improved in recent years.

The taxonomy of optical flow based methods denotes

global and local approaches. These two classes differ in the

way the spatial coherence has been implemented which is

needed to solve the data conservation or the so called inten-

sity constancy constraint. Global methods rely on the data of

the whole image through coupled energy terms as, e.g, the

smoothness constraint proposed by Horn and Schunck [2].

In this way, these methods are able to provide a very accu-

rate and dense motion field. However their computational

complexity is related to the input images size and not to the

number of estimated motion vectors.

For many applications in the field of video-based surveil-

lance [3], medical imaging [4] and video coding [5] only a

sparse set of motion vectors is required. These applications

not only benefit from the accuracy but also from computa-

tional efficiency of local motion estimation techniques. Local

approaches incooperate the spatial coherence with the textural

information of a surrounding image region. In this way they

Fig. 1. Exemplary motion vector field estimated by the

BERLOF (top) and the proposed adaptive support region

modification (bottom) for the RubberWhale sequence.

are scalable with respect to the number of motion vectors to

be estimated and thus are very efficient in estimating sparse

motion information.

In general global methods are more accurate than local

by comparing dense motion estimates. But the impetus for

the development of new local optical flow based methods in-

volves the consideration of accuracy and run time aspects for

a sparse set of motion vectors. For example in [6] it has been

shown that for the evaluation of sparse motion fields local

methods are competitive to state-of-the-art global ones.

The research on local optical flow is mainly based on the

KLT (Kanade Lucas Tomasi) tracker [7]. Several methods

address the run time aspect by improving the performance

through parallelization, e.g. GPU implementations were pre-

sented by Sinha et al. [8], or reducing the computational com-

plexity through additional approximations of the data term by

using integral projections [9]. In [6] the bilinear interpolation

filter for the iterative scheme has been examined to reduce
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Fig. 2. Schema of the construction of the adaptive support

region for the anchor pixel p. Green areas denote exemplary

support regions.

computational complexity without losses in accuracy.

To enhance the accuracy Odobez et al. [10], Kim et al. [11]

and Senst et al. [12] investigate into norms that are robust

against outliers. In addition the shape of the region could

be enhanced e.g. by Gaussian and Laplacian of Gaussian

weighting functions as proposed in [13] or by changing the

region size in relation the residual error and texture structure

as proposed in [12].

In this paper we will further enhance the previous work

resulting into the RLOF (Robust Local Optical Flow) [12]

and its accelerate derivative the BERLOF [6]. We observe

that a limitation of the previous work lies in the rectangular

shape of the support region. As shown in [12] this leads to

the generalized aperture problem, where a large support re-

gion increases the probability for containing multiple mov-

ing objects. To enhance the accuracy in that case we propose

to use an adaptive support region in order to respect motion

boundaries. Therefore we utilize the generation of adaptive

support regions proposed by Zhang et al. [1]. This method

has proven to be computational efficient and is therefore well

suited in respect to the run time requirements. In the fol-

lowing we provide a general framework to apply the adaptive

support regions for gradient-based local optical flow methods.

An implementation will be given for the PLK (Pyramidal Lu-

cas Kanade) method and the RLOF.

2. CROSS BASED ROBUST LOCAL OPTICAL FLOW

The RLOF as well as the PLK could be formulated by the en-

ergy term of the generalized gradient-based optical flow equa-

tion [12]

min
d

∑

Ω

w(x) · ρ
(

∇I(x)
T
· d+ It(x),σ

)

(1)

where d denotes the displacement for a small region Ω at

a time t. The displacement is estimated depending on the

spatial derivative ∇I(x) and temporal derivative It(x) of a

grayscale image I(x, t) with It(x) = I(x, t) − I(x, t + 1)
with x ∈ Ω, w(x) is a weighting function and ρ a norm with

its scale parameters σ. The least square estimator is applied

by the PLK to solve eq. 1 while the more robust shrinked Hu-

ber norm is applied by the RLOF to reduce the influence of

outliers. In addition a pyramidal implementation and an it-

erative scheme in a Newton-Raphson fashion is applied, so

that

∆d
i = G

−1 · bi−1 (2)

denotes the incremental motion vector and

d
i ← d

i−1 +∆d
i (3)

with the gradient matrix G
−1 and the mismatch vector bi−1

for the current iteration i. For further details refer to [14, 12].

For each iteration i the mismatch vector has to be updated

according to the previous displacement. In order to account

for displacement in the subpixel domain a bilinear interpola-

tion is applied. To apply the interpolation four support points

are necessary. The support points surrounding the endpoint

of the motion vector di and are located at the respective in-

teger value positions. In [6] it is shown mathematically that

the incremental motion vector depends on these support vec-

tors and the systems of bilinear equation. Consequently, the

update of the temporal derivatives is not necessary if the sup-

port points are constant and the final motion vector could be

estimated directly by a systems of bilinear equations under

certain conditions as described in [6].

In general the weighting function for local methods is

chosen to be w(x) = 1. This leads to the violation of the Lu-

cas Kanade constant motion constraint that assumes a single

motion component in a support region since multiple mov-

ing objects can be covered by the rigid shape. To account

for local motion discontinuities we apply the adaptive sup-

port region definition as proposed in [1]. Therefore we as-

sume that the boundaries of different moving objects lead to

motion discontinuities. Thus, the shape of the support region

has to correspond to the motion discontinuities during flow

estimation. Assuming that the local distribution of the inten-

sity values correspond to the object boundaries, we apply the

cross based method of [1], which utilizes the color similarity

for generation of a variable support region.

The construction of the local support regions is done in

two stages. First, two horizontal and two vertical arms are

created for every pixel. Second, the support region is build

by a combination of all horizontal arms defined by the pixels

within the vertical arm of the center pixel respectively. The

definition of the horizontal and vertical arms for a given pixel

depends on a threshold value τ that defines the maximum ab-

solute intensity difference between the center pixel at position

p and the respective pixel at pn located on the corresponding

arm. The resulting arm length r∗ is then defined to consist of

all pixels directly connected to the center pixel for which the

absolute intensity difference does not exceed τ . The defini-
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Fig. 3. Evaluation of the tracking performance averaged over

all Middlebury sequences.

tion of r∗ is formulated as follows:

r∗ = max
r∈[1,L]



r ·
∏

n∈[1,r]

δ(p, pn)



 (4)

Where L denotes the maximum arm length and δ(p, pn) is

computed considering all three RGB color channels by:

δ(p, pn) =

{

1, max
c∈[R,G,B]

(|Ic(p)− Ic(pn)|) < τ

0, otherwise
(5)

The resulting four arms lengths h−

p , h
+
p , v

−

p , v
+
p can then

be stored efficiently in the four channels of a dedicated image

used as a lookup table during the second stage to define the

resulting adaptive support region. Following [1], the support

region is defined by the combination of all horizontalH(p) =
{x = (x, y)|x ∈ [xp − h−

p , xp + h+
p ], y = yp} and vertical

arms V (p) = {x = (x, y)|x = xp, y ∈ [yp − v−p , yp + v+p ]}.
The integration of the adaptive support region into the mini-

mization functional given in eq. 1 is applied by the weighting

function which is then given by

w(x) =

{

1, x ∈ U(p)
0, otherwise

(6)

with the support region

U(p) =
⋃

q∈V (p)

H(q) (7)

Figure 2 gives an example of estimated support regions and

the schematic overview of the support region construction by

the corresponding arms.

3. EVALUATION

In section we evaluate the proposed adaptive support region

as a generic tool for local optical flow methods. Therefore
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Fig. 4. Run time comparison of the local optical flow methods

for the Grove3 sequence of the Middlebury dataset.

we modify the existing BEPLK and BERLOF algorithms

[6] which are enhanced versions of the PLK 1 and RLOF 2

methods [14, 12]. The performance of the new methods CB-

BEPLK and CB-BERLOF have been evaluated in terms of

run time and accuracy using the Middlebury optical flow data

set [15]. All methods are implemented using SIMD extension

of the CPU (SSE2) and multi-threading on a PC with 4x3.56

GHz Intel CPU. For each method we use the same basic con-

figuration, i.e. 3 pyramid levels, Ω = 19 × 19 region size,

the convergence criteria are set to a maximum of 20 iterations

and ǫ = 0.1. For the methods based on the RLOF the follow-

ing additional parameters are set, σ = (32, 160) and 7 × 7
for the small region size. For the modified methods using the

adaptive support region the color threshold is τ = 25 with

an maximum arm length of L = 9. To avoid the aperture

problem we enforce a minimum arm length of L = 3. In

figure 1 we show an exemplary result of the improved motion

estimation at object boundaries.

The accuracy of the proposed methods is compared in a

sparse manner by using a feature tracking framework. Fol-

lowing [6] a forward–backward confidence measure is ap-

plied to reject false estimates. Table 1 shows the result for

each sequence of the Middlebury data set comparing the Av-

erage Endpoint Error (AEE) and the tracking efficiency η.

While the Average Endpoint Error is an accuracy measure,

the tracking efficiency is a measure of successfully tracked

features. Both measures have to be taken into account to rate

the quality of the different methods, which is done by the

tracking performance plot. Figure 3 shows the tracking per-

formance [12] averaged over the whole data set, where low

AAE and high η are preferable.

The tracking performance plot was computed by varying

the confidence threshold and provides an overview of the AEE

related to the number of tracked features. Similar result can

be observed for the PLK/RLOF and the corresponding BE-

PLK/BERLOF methods. In contrast the proposed extended

1download at http://www.opencv.org/ (v2.4.6)
2download at http://www.nue.tu-berlin.de/menue/forschung/projekte/rlof/



Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

AEE η AEE η AEE η AEE η AEE η AEE η AEE η AEE η

PLK 0.09 99.6 0.23 96.1 0.56 88.2 0.13 97.2 0.14 97.8 0.15 84.4 0.62 84.0 0.20 92.2

RLOF 0.09 99.7 0.21 96.4 0.54 88.2 0.13 97.3 0.14 97.7 0.14 85.7 0.60 84.2 0.20 92.8

BEPLK 0.09 99.6 0.23 96.1 0.56 88.2 0.13 97.2 0.14 97.8 0.15 84.4 0.62 84.0 0.20 92.2

BERLOF 0.09 99.6 0.21 95.1 0.54 86.3 0.13 97.0 0.14 97.2 0.14 85.1 0.61 84.0 0.20 91.6

CB-BERLOF 0.09 98.9 0.13 91.6 0.32 78.3 0.11 92.4 0.09 94.9 0.13 83.4 0.40 78.2 0.18 84.5

CB-BEPLK 0.09 98.9 0.13 91.2 0.33 77.9 0.12 92.3 0.09 94.8 0.13 83.3 0.41 78.2 0.18 84.4

Table 1. Results of the Middlebury training sequences for sparse motion estimation and a fixed confidence threshold of 0.5.

methods using variable support regions, CB-BEPLK/CB-

BERLOF, clearly outperform the other methods in terms of

accuracy.

Figure 4 provides a run time comparison between all eval-

uated methods. The run time was measured related to a vary-

ing number of features to track. Both proposed extended

methods, like the other methods, still feature a linear com-

putational complexity related to the number of features. The

overall run time of the proposed methods can still cope with

the existing ones. Therefore, the proposed methods should be

preferred for their enhanced accuracy in all cases where the

extended run time is negligible.

4. CONCLUSION

In this paper we propose to apply an adaptive support region

based on color information to increase the estimation accu-

racy of the optical flow. The modification is implemented

by replacing the constant weighting function in the general-

ized local optical flow equation with a new weighting func-

tion derived from the adaptive support region. This especially

increases the motion estimations around object boundaries.

The evaluation with the Middlebury data set shows an im-

proved tracking performance for the cost of a slide increase

in run time. But still the computational complexity remains

linear related to the number of features to track. The proposed

extension is designed to be generic and therefore applicable

for most state-of-the-art methods that have been shown ex-

emplary by for the Pyramidal Lucas Kanade and the Robust

Local Optical Flow methods.
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