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Abstract—3D–reconstructions produced by active 3D–scanning
systems based on structured light can achieve high accuracy
reconstructions of the scene surfaces. Structured light algorithms
based on phase measuring triangulation (PMT) utilize phase–
shifted sinusoidal patterns projected into the scene for a precise
determination of correspondencies. The number of patterns used
for that purpose may vary depending on the design of the
algorithm.

No matter how many patterns are required, all of these
algorithms suffer from the acquisition time needed to record all
patterns sequentially. In case of a dynamic scene the sequential
acquisition of images lead to the capture of dynamic objects in
different poses which in turn result in erroneous reconstructions
depending on the object’s velocity. Our goal is to achieve a
more robust result during dynamic scene capture as well as
better scene reconstruction rate. Two novel approaches are
presented to reduce the amount of required patterns for a high–
accuracy 3D–reconstruction. This is achieved by incorporating
passive matching techniques in the phase–unwrapping stage of
the algorithm, allowing to drop one half of the sinusoidal patterns.

I. INTRODUCTION

The three–dimensional presentation of television programs
and movies have become more and more common during
the last years. Current setups for movie theaters as well as
home entertainment are capable of presenting the content in
a stereoscopic manner by utilizing two or more views of the
scenery. Presenting different views of a scenery for each eye of
the spectator results in a three-dimensional impression of the
scenery by the visual exploitation of parallax. Along with these
immersive capabilities comes the need for high–quality scene
acquisition to produce suitable input for such systems [1][2].

3D–scanning systems based on structured light are feasible
candidates for such high–quality scene acquisition whenever
the illumination of the scene with a given intensity pattern
is applicable. Possible settings for these scanners range from
small objects up to volumes of several cubic meters. Even
with such high–volume reconstructions very detailed repre-
sentations of the scenery can be acquired [3].

The reconstruction process of such systems requires the
projection of several well–known intensity patterns. Thus,
capturing real–world scenes featuring dynamically moving
objects becomes a very challenging task for such scanners
due to the time needed for sequential projection and recording
of these patterns. A dynamic object changes it’s pose during
illumination and in turn distorts the corresponding reconstruc-
tion [4]. Our main goal is to make the reconstruction less

Fig. 1. 3D–reconstructions. From left to right: PMT, PCF, SPU.

prone to motion artifacts caused by dynamic objects. Our
approaches are also offering the possibility to raise the rate of
reconstruction. We effectively reduce the number of patterns
required while preserving a detailed and accurate high–quality
reconstruction.

In the following sections we will give a brief overview of
related work, describe our approaches for reducing the number
of required patterns, evaluate the achieved results and close
with the conclusion and discussion of further work. A first
impression of the achieved results is given in figure 1, showing
the reconstructions of the basic algorithm [3] as well as both
approaches presented in this paper.

II. RELATED WORK

Image–based 3D–reconstruction is usually divided into ac-
tive and passive reconstruction methods [5][6][7]. Nowadays
there are several commercial systems available of both cat-
egories that allow for out–of–the–box acquisition of 3D–
geometry. Binocular or even trifocal passive stereo cameras
like the Point Grey Bumblebee cameras are good examples
of ready–to–use products while the Microsoft Kinect or the
ASUS Xtion are amongst available active stereo cameras. In
general, the active variants can achieve much more detailed
and accurate 3D–information than their passive counterparts
which are also more prone to erroneous behavior because of
homogeneous areas or repetitive patterns and alike.

Furthermore, the passive reconstruction methods are cate-
gorized into local and global methods. Global methods which
are optimizing the estimated reconstruction using the full
images provided by the sensor usually achieve most accurate
passive reconstructions. Local methods that rely only on a
defined surrounding area within the provided images generally
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Fig. 2. Schematic diagram of the PMT algorithm [3].

compute less accurate results but are much faster, especially on
modern GPGPU capable hardware. A comprehensive summary
of passive algorithms of both types is given in [5]. For the
scope of this work we make use of local passive reconstruction
techniques for the sake of fast computation which is required
for a real–time acquisition system we are dealing with.

From the family of active reconstruction techniques we
relate to the class of structured light methods using phase
measuring triangulation (PMT) [8][6][7]. The different phase–
shifted patterns are projected into the scene and the 3D–
reconstruction is computed by measuring the deformations
within the pattern that is captured by the cameras. A good
overview of 3D–reconstruction algorithms based on structured
light is given in [9].

III. IMAGE GUIDED PHASE UNWRAPPING

In this work we base our approaches to reduce the amount
of required patterns on the PMT method presented in [3]. We
give a short overview of this method before describing our
approaches to modify the phase unwrapping in detail.

As presented in [3], this method projects six phase–shifted
sinusoidal patterns onto the scene for 3D–reconstruction.
There are three high–frequency and three low–frequency pat-
terns projected. For the high–frequency triplet the sinusoidal
intensity ramp is wrapped thirty–two times from the left to
the right of the image. For the low–frequency triplet exactly
one wave is shown throughout the whole width of the image.
The phase is shifted by 60 degrees for each pattern of both
triplets, resulting in six distinct patterns.

Both triplets are projected sequentially onto the scene and
captured by a synchronized monochromatic high–speed cam-
era. Based on the resulting six images showing the distorted
patterns captured from another point of view, as well as the six
undistorted images used for projection, the absolute phase Φ

within the camera and projector is computed as outlined in
figure 2. The absolute phase Φ is computed for each pixel
coordinate x using the number of wraps N and the modulo 2π
unwrapped phases of the high–frequency and low–frequency
pattern Φ′h and Φ′l, respectively:

Φ(x) =
Φ′h(x) + bNΦ′l(x) + 0.5c

N
(1)

The modulo 2π phase Φ′h,l(x) is computed depending on
the three phase–shifted intensity patterns p1,2,3(x) of a given
frequency triplet:

Φ′h,l(x) =
arctan

( √
3(p1(x)−p3(x))

2p2(x)−p1(x)−p3(x)

)
2π

(2)

For the scope of this work, we utilized one 3D–scanning unit
of the complete setup presented in [3]. This unit consists of a
projector for illumination, a monochrome high–speed camera
for phase acquisition as well as two color cameras for stereo
matching used in both approached described in sections III-A
and III-B. This setup is shown in figure 3.

In order to reconstruct three–dimensional world coordinates
for a given pixel of the distorted image, the corresponding
pixel in the undistorted image has to be found. Having

Fig. 3. Hardware configuration of the 3D–scanning unit.
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Fig. 4. Color image of the scene and PMT based 3D–reconstruction.

computed the absolute phase Φ for both, the distorted images
of the monochromatic camera as well the undistorted projected
images, this correspondence can easily be found by searching
for the same intensity or phase value along the epipolar
line given by the calibrated geometry of the projector and
camera setup [10]. This search yields the correspondence in
pixel coordinates for both images that can be transformed
into three–dimensional world coordinates using the calibration
information. Then, two lines through the geometrical center
of the respective camera or projector as well as the three–
dimensional world coordinate of the corresponding pixel are
determined. The intersection of both lines then results in
the triangulated three–dimensional world coordinate observed
through the corresponding pixels.

Computing these three–dimensional world coordinates for
each pixel in the distorted image that has been illuminated
by the projected patterns results in a dense high–quality 3D–
reconstruction of the scene like shown in figure 4. For a more
detailed description of this method, please refer to [3].

In the following we present two approaches to reduce the
amount of required sinusoidal patterns of the PST method
described. Both approached try to determine the absolute
phase Φ using the three high–frequency patterns only, avoiding
projection of the low–frequency pattern. First, we describe a
bottom–up approach in section III-A trying to estimate the
correspondance directly by incorporating the modulo 2π phase
Φ′h into the cost function of a passive reconstruction method.
Second, we describe a top–down approach in section III-B
trying to replace the calculation of bNΦ′l(x)+0.5c in equation
(2) by estimating the corresponding segment of Φ′l(x) based
on a precomputed depth estimation. If the absolute phase can
be determined successfully by these approaches, the image
acquisition time needed for a single reconstruction is reduced
by a factor of two and the low–frequency patterns can be
skipped. A shorter acquisition time reduces the negative impact
on the reconstruction result induced by the movement of a
dynamic object. Also, less patterns to be projected allow for
a higher rate of reconstruction.

A. Plane–Sweeping Based On Phase Cost Function (PCF)

Next to the high–speed monochromatic cameras and the
projectors, the active 3D–reconstruction system also captures
the scene using four color cameras that are also geometri-
cally calibrated within the system. The acquired color images

in [3] are used for texturing the reconstructed scene by using
projective texturing techniques [11]. In order to drop the low–
frequency patterns we incorporate a passive 3D–reconstruction
method presented in [12], a method that is designed for a
plane–sweep based reconstruction using multiple color images.
For the first approach, this method is adapted so that the
unwrapped high–frequency phase images are also taken into
account for determining the pixel correspondencies.

Like the underlying active 3D–reconstruction, the passive
plane–sweep method in [12] also requires a calibrated setup
of cameras in order to determine three–dimensional world
coordinates observed by corresponding pixels. Using this geo-
metric information, a virtual plane is constructed representing
a hypothetical planar reconstruction of the scene. Applying
projective texturing [11], the images of the corresponding color
cameras are projected onto that plane and blended together.
Whenever the virtual plane intersects with the actual geometry
of the scene, the projected color images blend into a locally
undistorted version of the actual visible geometry [13]. The
virtual plane featuring the blended textures is then projected
into another camera which is a suitable reference as it features
a second image that is composed by the real projection of the
scene. The visual difference can be expressed by a given local
aggregated cost metric between the blended hypothesis and the
undistorted color image of the reference camera. The virtual
plane is swept through a predefined volume yielding many
different blended versions of the scene geometry composed
by the color images. For each pixel in the image plane of the
reference camera the minimum visual difference during the
plane–sweep determines the pixel correspondencies between
the composing color cameras required for triangulation.

The local visual cost of a plane hypothesis is computed
by the locally aggregated pixel–wise cost function using the
blended color image and the reference image. For the pixel–
wise cost C(x) computation, we calculate the AD–CENSUS
measure for the pixel coordinate x using of the absolute pixel
differences (CAD) and the Hamming distance within a local
window (Ccensus), described in detail in [14]

C(x) = p(Ccensus(x), λcensus + p(CAD(x), λAD) (3)

with
p(c, λ) = 1− exp(− c

λ
) (4)

to map the cost values to the range [0, 1].
The pixel–wise computed costs are then aggregated within a

dynamic local area surrounding the pixel of interest. For this,
we utilize the cross–based skeleton method presented in [15].
This combination has proven to allow for fast computation
of good quality reconstructions using color images from
calibrated cameras only [12].

For this approach we extend the pixel–wise cost function
to also take the unwrapped high–frequency patterns projected
(Φ′h,projector) and captured (Φ′h,camera) into account. The
assumption is that next to the visual difference of the blended
color images, the difference of the intensity within the pro-
jected patterns allow for a better reconstruction than the color
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Fig. 5. Candidate search and validation of the SPU approach.

based approach. The new extended pixel–wise cost function
C ′(x) used for this approach is expressed by:

C ′(x) =
|Φ′h,projector − Φ′h,camera|+ C(x)

2
(5)

B. Segmentation Based Phase Unwrapping (SPU)

For the second approach we incorporate a segmentation of
the distorted unwrapped high–frequency pattern as well as a
color image based search for corresponding segments. If a
whole segment can be matched correctly in the undistorted
unwrapped high–frequency pattern, unwrapping of the whole
segment to the absolute phase according to (1) becomes
possible.

The distorted reprojection of the high–frequency pattern
captured by a monochromatic high–speed camera is segmented
using a connected components segmentation presented in
[16]. Knowing the corresponding segment within the high–
frequency pattern a correspondence search along the epipolar
line e through the undistorted high–frequency pattern given
by the geometric calibration is performed. This epipolar line,
depending on the hardware setup and pixel–coordinates x of
the pixel of interest in the distorted pattern, intersects with
up to all thirty–two wraps of the undistorted high–frequency
pattern. Whenever the difference of intensity between the
distorted and undistorted pattern is below a certain threshold,
a correspondence candidate x′ has been found.

For all candidates, the three–dimensional coordinates of
the candidate are reprojected into the corresponding color
cameras. Then, the visual difference within the color images is
evaluated using the pixel–wise cost function (5) and the local
cross–based aggregation from [15]. The process of candidate
selection and validation is shown exemplary for one pixel–
cordinate in figure 5. The local aggregations are declared as
LA and LB in that figure. The minimum visual difference
is stored for the pixel of interest along with the segment
number corresponding to the segment in the undistorted high–
frequency pattern.

Once all pixels of the distorted high–frequency pattern have
been processed the final segment assignment for the whole
segment in the distorted pattern is achieved by computing a

histogram of the stored segment numbers within the whole
segment. The segment with the highest support is selected to
represent the corresponding segment in the undistorted pattern.
Knowing which segment the pixel of interest corresponds to
as well as the intensity value in the distorted high–frequency
pattern, the pixel correspondence between the distorted and
undistorted patterns along the epipolar line is unique within
the segment of the undistorted pattern. Thus, we have a good
estimate of bNΦ′l(x) + 0.5c for equation (1) which, having
found to the correct segment, produces an excellent absolute
phase Φ in the corresponding segment. The final triangulation
is then computed by using the correct intensity match in the
undistorted pattern and the pixel–coordinate of interest in the
distorted one.

IV. EVALUATION

The evaluation of the two presented approaches is done
by assuming that the 3D–reconstruction given by the full
active six–pattern PMT method [3] can serve as a ground–
truth model. For the two approaches, in order to reduce the
amount of necessary sinusoidal phase–shifted patterns, the
reconstruction quality itself is not assumed to be enhanced.
Instead, assuming an accurate estimation of bNΦ′l(x) + 0.5c
for equation (1), the optimal solution would be an identical
reconstruction like computed by the full active method.

The difference between reconstructed surfaces can easily
be measured by comparing their depth maps generated by a
projection of the final 3D-model into the image plane of one
of the cameras. The difference of the depth values reveal the
similarity of the reconstructed surface. Thus, we find the mean
squared error (MSE) computed in the depth map domain to be
a useful quality measure for evaluation. The lower the MSE
value, the better the reconstruction aligns to the full active
result. The depth values are relative to the defined clipping
volume for a cameras field–of–view. Therefore these values
lie within the range [0.0, 1.0], defining the nearest visible 3D–
coordinate to be 0.0 and the 3D–coordinate at depth 1.0 to be
the most distant visible coordinate. Although the non–metric
calibration of the cameras does not allow a direct transfer of
these values into (milli-)meters, the relation between the values
is sufficient for our evaluation.

However, both approaches suffer from the systematic dif-
ficulties induced by passive stereo matching. Homogeneous
areas, repetitive patterns, reflections and other problems are
not reliably matchable within such algorithms and therefore
the captured scene has to be feasible in general for passive
reconstruction techniques. Otherwise, the passive matching
will fail yielding large errors in the final reconstruction.

The scene used for evaluation has not been adapted to be a
good candidate for passive matching. Figure 4 shows a color
image of the scene as well as the reconstruction result for
the whole scene generated by the full active PMT method.
Therefore, the results for comparison of the whole captured
scene (MSEcomplete), which are given in table I, are currently
of low significance for generic scenes. However, to focus
on the quality of reconstruction, we also have evaluated the
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reconstructions in a smaller area of the scene, the head region
of the horse shown in figure 1, where all algorithms can yield
adequate results (MSEhead). The results of the head region
are also shown in table I:

TABLE I
RESULTS OF THE MSE–BASED EVALUATION.

Algorithm MSEcomplete MSEhead

PCF 0.9091 0.3826e−3

SPU 0.2808 0.4120e−5

The interpretation of the values given in table I is straight-
forward and can easily be confirmed visually by the results
shown in figure 1. For the complete scene, the PCF approach
features errors way too big to be comparable to the full
active reconstruction. The scene features homogeneous areas
almost everywhere and therefore this bad result is expected.
Obviously, the incorporation of the modulo 2π phase into
the cost function of a passive reconstruction method is not
sufficient for a high–quality reconstruction.

The reconstruction of the whole scene by the SPU approach
also suffers a lot from the lack of texture. However, the
aggregated matching throughout each segment seems to be
way more suitable than adapting the cost function. Much larger
areas can be reconstructed with a low MSE value resulting in
an at least partially good–looking reconstruction. For scenes
featuring a higher degree of texture the ambiguity of the
segments correspondencies are expected to be less significant
resulting in an even more suitable reconstruction.

The reconstruction of the smaller part of the scene, featuring
the head of the horse that can adequately be matched by both
approaches, reveals the actual relation between the approaches.
While the PCF approach can already produce a result with
a low MSE value, the SPU approach shows a very good
similarity compared to the full active reconstruction with
an accuracy two orders of magnitude better than the PCF
reconstruction.

Visually, there is almost no difference between the in-
terior of a correctly matched segment found by the SPU
in comparison to the full active reconstruction. This result
shows the capability of the SPU approach to achieve a high–
quality 3D–reconstruction, at least for well–textured scenes,
that is almost as accurate as a full active reconstruction.
Also, both approaches compute their respective reconstructions
using only the high–frequency triplet of sinusoidal patterns,
effectively reducing the acquisition time and there also the
possible rate of reconstruction by a factor of two.

V. CONCLUSION AND FURTHER WORK

We have presented two different approaches for a hybrid
3D–reconstruction by incorporating passive reconstruction
techniques in an active PMT 3D–scanning system. While the
bottom–up PCF approach, described in III-A, can not benefit
from the actively induced high–frequency unwrapped phase,
the top–down SPU approach, described in III-B, can achieve

high–quality reconstructions, at least for scenes suitable for
processing by passive reconstruction techniques.

While the acquisition time of just the high–frequency triplet
allows for a rate of reconstruction twice as high, the impact of
dynamic objects has still to be determined but is expected to be
less intense using the segmentation based phase unwrapping
approach.

Further work will focus on the borderless segmentation of
the high–frequency patterns in order to further complete the re-
sulting 3D–reconstruction. Finally, to approach the ambiguities
induced by problematic areas for the passive techniques used,
a more sophisticated segment assignment should be derived
taking neighboring segments into account.
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