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Abstract—This paper introduces a novel approach for coding

luminance images using kernel-based adaptive filtering and

context-adaptive arithmetic coding. This approach tackles the

problem that is present in current image and video coders; these

coders depend on assumptions of the image and are constrained

by the linearity of their predictors. The efficacy of the predictors

determines the compression gain.

The goal is to create a generic image coder that learns and

adapts to the characteristics of the signals and handles non-

linearity in the prediction. Results show that pixel luminance

prediction using the Kernel Least Mean Squares (KLMS) yields

a significant gain compared to the standard Least Mean Squares

algorithm. By coding the residual using a Context-Adaptive

Arithmetic Coder (CAAC), the codec is able to outperform the

current industry standards of lossless image coding. An average

bitrate reduction of more than 2.5% is found for the used test

set.

I. INTRODUCTION

Linear predictive coding is a powerful technique and well-
established method for coding of audio and video samples.
The strategy involves a linear prediction filter and the coding
of prediction error amplitudes e(n) rather than the amplitudes
of the original signal x(n). The purpose of the prediction filter
is to arrive at a prediction error variance �

2
e

, that is smaller
than the variance �

2
x

of the original signal, resulting in the
prediction gain G

P

=
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2
x

�
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e

.
Optimal prediction filters in the “Wiener” sense also result

in a decorrelated signal e(n). The prediction filters thus serve
as pre-whitening filters prior to coding the prediction error
samples. Coding theory reveals that a prediction gain larger
than 1 usually results into a coding gain, thus coding rate
becomes R

e

< R

x

.
A linear predictor is, however, only optimal as long as the

source is stationary and Gaussian distributed. Unfortunately,
audio and video samples in practice resemble amplitude den-
sity distributions that are far from Gaussian - thus linear filters
are deemed to provide suboptimal results for prediction and
coding. Surprisingly, few attempts have been made thus far
to explore non-linear prediction strategies for coding of audio
and video.

During the last 20 years, powerful non-linear techniques
evolved in the machine learning community, among others,
around the non-linear support vector machine theory for clas-
sification and regression of signals [1]. The immense success
of non-linear support vector classification in general is due
to the use of a non-linear transform �(x) of the signals/data

into a (possibly infinite) dimensional feature space. Non-linear
regression using kernels is intimately related to the problem of
non-linear prediction in signal theory, and thus highly relevant
for predictive coding in general.

Our challenge is the exploration of non-linear statistical
dependencies between amplitudes of image samples for re-
ducing redundancy of the source prior to coding. To this end
we investigate the feasibility of kernel filters for non-linear
prediction and lossless coding of images. In other words, our
goal is to create a generic image coder that adapts to the
characteristics of the signal and handles the non-linearity in
the prediction step. As such, we tackle some limitations that
are still present in other image coders.

Standard image coders depend on a predefined model of the
image statistics. In JPEG-LS/LOCO-I and HEVC intracoding,
linear predictors are used to predict pixel values. These basic
models try to capture how the signal is most likely to behave.
In JPEG-2000, the images are built as linear combinations of
wavelets, and in JPEG linear combinations of DCT-blocks are
used [2]. These codecs are based on the assumption that these
bases are the basic building blocks of an image [3]. There
are few approaches that incorporate non-linear prediction. One
example is AdNN+, which is built as an ensemble of three
adaptive neural networks. AdNN+ is a parametric method,
where ours is non-parametric or memory-based [4].

The models that are used in the current state of the art
coding techniques, excluding the high complexity coders such
as TMWLEGO and AdNN+, are very basic, but perform very
fast and are already very efficient [5]. These lower complexity
coders share the same characteristics, i.e. linearity and basic
assumptions of the image. Our goal is to extend these to non-
linearity and having no or minimal assumptions of the content
of an image.

Our method for tackling this is to use the above mentioned
kernel methods. These methods have recently gained popular-
ity in signal processing and have led to a new transform coding
scheme and an adaptive sampling image coding approach
[6][7][8]. These methods allow to create non-linear filters
and to learn the characteristics of a signal. The idea is not
to use a predefined set of predictors or bases, but to build
these generically by learning from the images themselves.
Furthermore, due to the use of kernel methods, the predic-
tors can function non-linearly while maintaining a reasonable
complexity, depending on the size of the dataset.

A generic method makes the coder suitable for a wide range
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of content, or a mixture of content. For example, JPEG-LS
generally yields good results, although JPEG-2000 in lossless
mode often outperforms JPEG-LS. This is especially true on
images with very high spatial frequencies, for which the simple
assumptions in JPEG-LS do not hold. Otherwise, the Portable
Network Graphics (PNG) format clearly outperforms JPEG-
LS and JPEG-2000 for specific computer generated images,
such as line drawings [9].

Our coder first performs a prediction using an kernel based
adaptive filter, which results in a decorrelated image, the
residual. This residual is then later entropy coded using
our Context-Adaptive Arithmetic Coder (CAAC). Due to this
structure, the presented encoder and decoder are identical for
the greatest part of the code. Therefore, the complexity of the
encoder and the decoder is identical.

Since the use of kernel filters is not well introduced in the
coding community, we start with an overview on the essentials
of kernel filters to motivate the subject in Section II. Next, we
will discuss the techniques used for prediction and the entropy
coder in Section III. The experiments are discussed in Section
IV, followed by the conclusions in Section V.

II. KERNEL FILTERS

Assume signal x(n) is a collection of pixel amplitudes in
a scan line of a grey-level image, n being the position of
a pixel in horizontal dimension. Our purpose is to predict a
pixel amplitude x(n) based on previously L coded/transmitted
amplitudes x(n� 1), x(n� 2), . . . , x(n� L).

A linear predictor is of the form

x

p

(n) = w

T

x (1)

with previous sample vector x and weight vector w with L

filter parameters. The optimal prediction filter parameters can
be found by employing the orthogonality principle according
to the Wiener-Hopf equation.

A non-linear kernel predictor is based on the following non-
linear expansion of the previous samples vector x

x

p

(n) = !

T

�(x) (2)

Here, �(x) is a feature vector containing the non-linear
expansion terms of x and !

T the weight vector. Please note,
that usually both x and !

T are very high dimensional, and
even of infinite dimension for the Gaussian expansion.

Depending on the exact non-linear feature mapping the filter
design would involve the optimization of a possibly infinite
dimensional weight vector, which is not feasible. Therefore,
the following extension to Eq. 2 allows to arrive at a finite
dimensional filter design,

!
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=
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w

k

�(ck) (3)

where �(ck) is now non-linear expansion on each of the J

centers ck. J being a finite number of, what can be thought
of, reference points c

k

in the feature space.

The predictor equation (Eq. 2) thus extends into
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We have derived a filter that is non-linear in x but fortunately
linear in w. If J ⌧ dim{�(x)} then we also have reduced
the number of filter parameters significantly. Nevertheless, the
predictor filter still involves the calculation of an inner vector
product whereby the dimension of the vectors can be infinite.

According to the Mercer theorem [10], there exist positive,
semi-definite kernel functions 

h

(·, ·) whereby



h

(c

k

, x) = �(c

k

)

T

�(x) =< �(c

k

),�(x) > (5)

As a consequence, it is possible to replace the inner products
in our predictor equation with a well defined Mercer kernel
function (the Mercer kernel) and we do not need to calculate
inner products with vector of infinite dimensions. In other
words, the kernel function (·, ·) of the vectors in the lower
dimensional space (the input space), is the inner-product of the
vectors mapped to the higher dimensional space (the feature
space). This mapping is also frequently referred to as the
kernel trick.

This enables us to work in the feature space without an
excessive increase of complexity. In simpler terms, this results
in a non-linear comparison metric between patterns.

Consequently, the output of our non-linear predictor filter
is expressed as the weighted sum of kernel functions:

x

p

(n) =

JX

k=1

w

k
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k

, x) (6)

Here, each input past samples vector x is correlated against
each center vector c

k

using the kernel function 

h

(·, ·). The
predicted value of x(n) is the weighted sum of all J kernel
evaluations. The non-linearity of the filter is embedded into
the choice of the particular kernel function.

III. LOSSLESS CODING

A. Prediction

A common approach used in lossless coding is to reduce
correlation in an image by online prediction, in which the
image is processed in raster scan. As such, previously encoded
neighbouring pixels (the neighbourhood) are used to estimate
the value of the current pixel. Thus, only the prediction error
needs to be saved, since the prediction itself can be restored
at the decoder side. The collection of all prediction errors is
called the residual. Note that we always work with a mean
subtracted image.

Our challenge is to design a generic, self-adapting algorithm
that does not rely on dedicated and fine-tuned switching
operations (as in JPEG-LS and related standards). We want
to learn the relationship between the pixel and its neighbour-
hood. Since our strategy involves the continuous prediction of
samples x(n) based on an ever-growing dataset (the previous
coded pixels), it was advisable to resort to online kernel
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Fig. 1. An example of the neighbourhood of a pixel. Different masks are
possible.

% Choose step-size parameter ⌘ and kernel 
a1(1) = ⌘d(1)

f1 = a1(1)(u(1), ·)

% Computation
while [u(i), d(i)] available do

% Predict output using estimated function f

i�1

f

i�1(u(i)) =
P

i�1
j=1 a

i

(i� 1)(u(i), u(j))

% Calculate the error made
e(i) = d(i)� f

i�1(u(i))

% Compute and store the new filter coefficient
a

i

(i) = ⌘e(i)

end while

Fig. 2. The kernel least-mean-square algorithm [10]

algorithms in order to avoid the inversion of very large
matrices.

A linear way of doing this is using the Least Mean Squares
algorithm. However, these relations do not have to be linear.
For example, linear predictors have difficulties learning strong
edges. For this reason, the LMS algorithm can be extended
using kernels, resulting in the Kernel Least Mean Squares
(KLMS) [11], which is able to learn non-linear relations
between the neighbourhoods and their respective pixel, as seen
in Fig. 1. KLMS, which is shown in Fig. 2, is an algorithm
particularly known in the machine learning world and univer-
sally applied for various time-series prediction problems.

The predictor parameters are adapted in an iterative way as
the filter moves over the pixels. Intuitively, the kernel function
(u

i

, ·) is used as a similarity measure to find the distances
between the current pattern u

i

and all the patterns in the
training set. These similarities are then used to weight the
filter coefficients a

i�1 of the filter. This weighted sum gives
the prediction f

i�1(u1) for the pattern u

i

(with corresponding
target output d

i

). The error that was made e = d

i

�f

i�1(u1) is
used to compute a new filter coefficient a

i

using ⌘, which is the
step-size parameter. The step-size parameter is the compromise
between convergence time and maladjustment [10]. Finally, the
pattern u

i

is stored in the training set.
The problem with KLMS is that the complexity grows as

the dataset grows. In this initial research, every new pattern
encountered during the encoding is is considered as a center
and is thus stored in the dataset, i.e. J is the amount of
samples. Implementation with a fixed-budget method such
as the Kernel Recursive Least-Squares Tracker [12], is still
ongoing research.
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Fig. 3. Transform the patterns from absolute values towards relative values

We have adapted the KLMS algorithm to be better suited
for the prediction of images in the following ways.

1) Relative Space: Instead of using the absolute luminance
values, we normalize the values in the neighbourhood (Eq. 7).

x

i

=

x

i

�min(x)

max(x)�min(x)

, 8x
i

2 x (7)

This allows multiple patterns in the absolute luminance
space to be projected on a single pattern in the relative space,
as illustrated in Fig. 3. In other words, we compare relative
patterns instead of exact matches. As such, patterns learned in
a dark area of the image are also relevant in patterns in light
areas if the changes in the environment are uniform.

This increases the prediction capability of the algorithm,
but decreases the resilience towards contradicting patterns.
However, experiments have shown that the prediction gain is
higher than the loss through contradicting patterns.

2) Choice of kernel: Experiments have shown that the
rapid descend of the Laplace kernel improves the prediction
capability of the algorithm.



L

(u, v) = exp(� ||u � v||
�

) (8)

3) Adaptive Bandwidth: Bandwidth or kernel size estima-
tion is a well known problem in using kernel-based techniques.
If the bandwidth is too large, then the system would reduce to
linear regression. If the bandwidth is too small, then the system
cannot do inference on unseen samples that fall between the
training data points [10].

To make the algorithm more adaptive towards different
types of images, we have used an adaptive bandwidth (AB)
approach, first introduced by Takeda et al. [13]. The bandwidth
adapts towards the local density of the patterns in the input
space. The local density µ

i

is calculated as

µ

i

=

8
<

:
ˆ

d(x

i

)

exp

⇣
1
P

P
P

i=1 log(
ˆ

d(x

i

))

⌘

9
=

;

�↵

. (9)

Where P is the number of elements in our training set, the
sample density, ˆ

d(x), is measured as

ˆ

d(x) =

1

P

PX

i=1

(x

i

, x), (10)

with ↵ being the density sensitivity parameter. ↵ is a scalar
satisfying 0 < ↵  1. This results in the fact that µ

i

has an
expected value of 1. µ

i

is then multiplied with the bandwidth
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parameter of the kernel function, � in the Laplacian case. This
expands the bandwidth when the local density is lower than
the mean, or shrinks the bandwidth in higher density areas.

This approach increases the robustness, i.e. if the bandwidth
parameter is not optimal for the image, the bandwidth can tune
itself to better fit the particular data set. The impact is more
noticeable when using slow decaying kernel functions such as
the Gaussian kernel, instead of the Laplacian kernel.

B. Entropy coding

Arithmetic coders are well known entropy coders with the
ability to reach a bitrate close to the first order entropy of
the source. The idea is based on an interval nesting algorithm
depending on the symbol probabilities [14][15].

Our implementation, dubbed Context-Adaptive Arithmetic
Coder (CAAC), receives the normalized histogram of the
residual image and fits a Laplacian shaped probability mass
function via maximum likelihood estimation. Consequently,
the only costs for signalling the initial probabilities consist
of the mean and the variance. The probability mass function
updates after each symbol, in order to make the coding
context-adaptive. Because it is the histogram of the values
to be yet encoded, the value after the occurrence of a symbol
decreases by one at each step.

From our experiments, CAAC results in a bitstream that has
a bit-per-pixel ratio that is not more than 0.01 bpp more than
the entropy of the residual.

IV. EXPERIMENTS

A. Implementation

The coder is implemented as a combination of MATLAB,
C and NVIDIA CUDA C. Some parts of KLMS are very well
suited for parallelism, such as the kernel evaluations that are
done in every iteration between the current neighbourhood and
the neighbourhoods of all previous patterns. Parallelizing this
on the GPU made the algorithm approximately 90 times faster
for a 512-by-512 pixel image.

B. Mask

Experiments were performed with different types of masks,
all masks have their advantages and disadvantages towards
types of patterns they are able to capture. The larger the mask,
the more distinct the patterns are, but lowers the prediction
capability for new unseen patterns. In contrast, the smaller the
masks are, the more problems are present with instationarity.
That is, the patterns are small in size, they overgeneralise,
which leads to contradictions in our data set which leads to
maladjustments of the weights and lowers the convergence
speed. Our experiments have shown that for images with
sufficient high resolution, a square mask having 12 elements
yields the best results.

C. Test set

For our experiments, continuous-tone grayscale images of
different resolutions (256x256, 512x512, 720x576) were se-
lected. These test sets are widely used for comparing perfor-
mance of lossless image coding [16].

(a) LMS (b) KLMS

Fig. 4. Comparison between the absoluted residuals for Lena.

D. Comparing LMS and KLMS

Here, we compare the KLMS algorithm with the online
Least Mean Square (LMS) algorithm. The efficacy of pre-
diction is measured through calculating the entropy of the
residual. In both cases, the mean value was subtracted from
the image. Consequently, the benefit of the non-linearity of
the method is shown. Both algorithms were trained on the
image they were coding in order to find the best possible
parameters. For KLMS, the parameters are the learning step,
bandwidth, and the mask size. The same parameters, except
for the bandwidth, are present in LMS.

In Table I, the lowest entropies are shown for LMS and
KLMS. For both LMS and KLMS, the same masks and a
large set of parameters were used in the experiments to find
these minimal entropies. It is clear that using kernels instead of
the inner-product introduces a gain for every image in our test
set. Although KLMS increases the complexity, it drastically
reduces the entropy of the residual. Entropy reductions up
to 0.55 bpp are found. A compression gain of 1.70 is found
on average, which would lead to a 5.7% bitrate reduction. A
visual comparison of the absoluted residuals is shown in Fig.
4. For KLMS the edges in the image are much darker, and
thus better predicted.

E. Impact of Adaptive Bandwidth

As mentioned above, the purpose of introducing an Adaptive
Bandwidth (AB) is to increase robustness towards non-optimal
kernel bandwidth settings for a given image. Experiments have
shown that the usage of AB is beneficial in cases where the
bandwidth was too small. Although for some images there
is an entropy reduction of up to 0.05 bpp on non-optimal
bandwidths, but in other images there was no substantial gain.
The experiments were performed with a density sensitivity of
0.1.

F. Comparison with other coders

In this section, we provide experiments on the test set and
compare our results to other state-of-the-art coders, being
JPEG-LS and JPEG-2000 in lossless mode [17][18]. For
JPEG-LS, the JPEG-LS reference coder v1.1.00 by HP was
used, and the JasPer reference coder was used for JPEG-2000
[19].
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TABLE I
COMPARING ENTROPY, VARIANCE, AND PREDICTION GAIN FOR LMS AND

PLAIN KLMS

LMS KLMS
Entropy Var Entropy Var Gain

Aerial 5.70 184.41 5.61 164.63 1.12
Baboon 4.56 44.92 4.33 34.49 1.30
Balloon 3.12 8.88 2.85 4.31 2.06
Barb 4.92 88.62 4.34 36.70 2.41
Barb2 5.04 105.46 4.70 61.51 1.71
Board 4.00 40.30 3.59 14.25 2.83
Boats 4.31 42.12 3.99 23.59 1.79
Girl 4.07 24.50 3.73 13.58 1.80
Gold 4.69 51.49 4.57 42.62 1.21
Hotel 4.83 88.82 4.41 41.96 2.12
Lena 4.42 44.24 4.21 28.06 1.58
Livingroom 4.94 80.24 4.74 61.26 1.31
Moon 5.00 72.09 4.96 66.37 1.09
Zelda 3.88 18.10 3.73 12.26 1.48

Average 4.53 63.87 4.27 43.26 1.70

TABLE II
COMPARING LOSSLESS CODERS WITH ADAPTED KLMS + CAAC IN bits

per pixels (BPP)

JPEG-2000 JPEG-LS KLMS/CAAC
Aerial 5.95 5.70 5.62
Baboon 4.20 5.04 4.33
Balloon 3.03 2.90 2.85
Barb 4.60 4.69 4.34
Barb2 4.79 4.69 4.70
Board 3.77 3.68 3.59
Boats 4.07 3.93 3.99
Girl 4.06 3.93 3.72
Gold 4.60 4.48 4.56
Hotel 4.59 4.38 4.41
Lena 4.31 4.24 4.20
Livingroom 4.87 4.71 4.74
Moon 5.26 5.08 4.97
Zelda 3.88 3.89 3.74

Average 4.42 4.38 4.27

Results can be seen in Table II. Remarkable is the Baboon
image, which consists of almost only high spatial frequencies.
Our scheme heavily outperforms JPEG-LS here, as the prede-
fined predictors do not capture the image statistics.

Our conceptually simple non-linear prediction performs on
average more than 0.1 bpp better (2.5% bitrate reduction) than
the state-of-the-art on average. Although, the complexity of
our scheme is considerately higher.

V. CONCLUSIONS

A novel generic lossless image compression scheme is
presented. Through kernel adaptive filtering, a non-linear pre-
dictor is learned on the image itself. The residual is encoded by

a context adaptive arithmetic coder. Experiments have shown
that a bitrate reduction of more than 2.5% is achieved on
average compared with JPEG-LS and JPEG-2000 lossless.
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