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Abstract— A novel Kernel PCA/Kernel KLT transform (S-
KPCA) is introduced which incorporates higher order statistics 
into the design of the transform matrix using a Reproducing 
Kernel Hilbert Space (RKHS) approach. The goal is to arrive at 
an orthonormal transform matrix E with column eigenvectors 
that allow reconstruction of an input vector with few coefficients 
and superior signal fidelity. In contrast to the well known Kernel 
PCA the number of the generated transform coefficients is not 
dependent on the size of the training set and the “pre-image 
problem” is avoided completely. Results indicate that the derived 
transform is more compact than the standard PCA/KLT in terms 
of fidelity measures in RKHS. 

I. INTRODUCTION 
The Karhunen-Loeve Transform (KLT), also called Principal 
Component Analysis (PCA), is an established means for 
transforming a vector x into a compact set of uncorrelated 
coefficients using a linear transform matrix E [1][2]. The 
compactness of the transform makes the KLT/PCA approach 
attractive for many applications. Often the goal is to reconstruct 
the elements in vector x using a subset of the transform 
coefficients in c and the associated eigenvector/basis functions. 
Analyzing the variance of the coefficients allows to select a few 
basis functions and coefficients of the transform for 
reconstruction. This is a classical approach used for 
dimensionality reduction of transformed feature vectors c in 
signal classification tasks. In information theory and practical 
communications systems the KLT/PCA is often used  as a pre-
processing step for “pre-whitening” a signal [1]. In image and 
video coding standards such as JPEG, MPEG-1/2/4  and MPEG 
AC3 audio coding, variants of the above PCA/KLT transform 
coding approach are well established [3]. In particular the well 
known Discrete Cosine Transform (DCT) and related variants 
were derived from the optimal PCA/KLT.  
The PCA/KLT is designed based on 2nd order statistics of the 
random vector source X. As such it is the the optimal transform 
if the random vector X is multi-dimensional Gaussian 
distributed. In this case the coefficients are not only pair-wise 
uncorrelated but even statistically independent [1]. In 
essentially all practical applications, however, the probability 
distribution of the random vector X is multimodal and far from 
Gaussian - PCA/KLT performs suboptimal in this case. During 
the last 20 years attemps have been made to design transforms 
by incorporating knowledge about higher order statistical 
dependencies between elements in X. As an example the 
Independent Component Analysis (ICA)  

 can be designed by minimizing i.e. the neg-entropy of the 
transform coefficients. The thus designed transform lacks 
compactness, which is the most important requirement in 
transform coding applications. A novel and very intriguing 
approach is the Kernel PCA [5], which promises interesting 
results for feature selection, feature reduction and denoising 
applications. Kernel PCA is designed by diagonalizing the 
Kernel Gram matrix. The resulting transform is also not 
necessarily compact (or sparse) [6]. A further serious drawback 
is that the dimension M of the coefficient vector c is dependent 
on the size M of the training data set. The Kernel PCA usually 
arrives at a heavily overdetermined set of basis functions. In 
addition, the well-known “pre-image problem” for 
reconstructing vector x based on a subset of transform 
coefficients causes significant difficulties and computational 
burden for kernels except the Gaussian kernel [6]. 
Consequently, not much work has been reported thus far on 
adaption of Kernel PCA for transform coding of signals. 
In this paper a novel approach for Kernel PCA/KLT transform 
is proposed. The novel transform incorporates higher order 
statistics into the design of the basis functions using a kernel 
approach - but significantly departs from the standard Kernel 
PCA approach. The transform arrives at a complete, non-
overdetermined set of basis functions in transform matrix E and 
consequently the number of transform coefficients in c is equal 
to the number of elements in vector x, as with PCA/KLT. The 
computational demand for designing the basis functions of the 
kernel transform is not significantly higher than that of the 
classical PCA/KLT approach. Most importantly, the transform 
is compact and outperforms the conventional PCA/KLT in 
terms of compactness in RKHS. 

II. DESCRIBING PROBABILITY DISTRIBUTIONS IN RKHS 
FEATURE SPACE 

Our strategy for the design of the Kernel Transform is to 
describe the statistical dependency/similarity between zero-
mean random elements 

! 

Xi
 and Xj  in a zero-mean random 

vector X in terms of the covariance 

! 

E "(Xi )
T #"(Xj )[ ] between 

the feature vectors 

! 

"(Xi ) and 

! 

"(Xj ), 

! 

"(.)# RN . The feature 

vectors capture non-linear components of 

! 

Xi  and 

! 

Xj  and 
their covariance measures similarity in RKHS. The covariance 
matrix 

! 

C" (X )" (X )  captures the covariance between all L 
elements 

! 

"(Xi ) and 

! 

"(Xj ) in vector X and is of size (LxL). 
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Recall, that in contrast the standard PCA/KLT explores the 
second order statistics by employing the covariance terms 

! 

E Xi " Xj[ ]  for covariance matrix 

! 

CXXwith size (LxL).  
In general, given two random variables X and Y in Hilbert 
space we can describe the characteristics of the density p(X) 
and p(Y) in terms of moments. Towards this end we form a 
nonlinear expansion of X and Y using the expansion vector 

! 

"(X)  and 

! 

"(Y ). The nonlinear expansion vector captures 
the nonlinear components of the random variables. We will 
restrict ourselves to non-linear expansions that transform our 
random input variable from Hilbert space into the Reproducing 
Kernel Hilbert Space (RKHS) [5].  The RKHS is a metric 
space of possibly infinite dimension [5][7]. As such it is 
possible to calculate normed distances between 

! 

"(X)  and 

! 

"(Y )  for our Kernel transform using inner products – 
identical as in Hilbert space for the design of the PCA/KLT.  
 
We consider  to be a feature vector of a Mercer Kernel 
k(.,.) and  may be of infinite dimension. Notice that we 
are not restricted to scalar random variables and X may be a 
vector random variable in RL. Since X and Y are random 
variables also the vectors 

! 

"(X)  and 

! 

"(Y ) are random vector 
variables and the components are random entries. According to 
the Mercer theorem an inner product between two feature 
vectors of the same kernel can be evaluated through the 
Mercer kernel function 

! 

"(X)T #"(Y ) = k(Y ,X). We can thus 
evaluate the inner product between features that life in a 
possibly infinite dimensional RKHS space without the need 
for calculating the inner product explicitly – by evaluating the 
kernel function. 
 
The density functions of p(X) and p(Y) can be fully 
characterized by the so-called „mean embedding“ vectors 

! 

µX = E "(X)[ ] , 

! 

µY = E "(Y )[ ]  if 

! 

"(X)  and 

! 

"(Y )  are 
feature vectors of a so-called „characteristic” kernel function 
k(.,.) [7]. Notice that not every Mercer kernel is also a 
“characteristic” kernel. Popular examples of characteristic 
kernels are the Laplacian kernel and the Gaussian kernel. In 
this paper we will explore the Kernel Transform using the 

translation invariant Gaussian kernel 

! 

k(X,Y ) = e"B(X"Y )2 . 
We note, however, that the approach is not restricted to this 
kind of kernel function. The kernel can be factorized into the 
following form: 
 

! 

k(X,Y ) = k(X "Y ) = e"B(X"Y )2 = e"B#X2 # e"B#Y 2 # 2B( )n(XTY )n

n!n=0

N=$

% =&T (X) #&(Y )  

 

! 

"T (X) = e#B$X2 1 2B $ X 2B2 $ X 2 4
3
B3 $ X 3 ... ...

% 

& ' 
( 

) *  

! 

"T (Y ) = e#B$Y 2 1 2B $Y 2B2 $Y 2 4
3
B3 $Y 3 ... ...

% 

& ' 
( 

) *  
 
are the feature expansion vectors of X and Y, both of infinite 
dimensions 

! 

N =" . The inner product can be evaluated 

through the kernel function 

! 

k(X,Y ) = k(X "Y ) =#T (X) $#(Y ) .  
 
The embedding captures weighted „moments“ of the 
distribution p(X). The embedding is “injective” – for each 
density distribution function p(X) and p(Y) a unique point in 
(the possibly infinite dimensional) RKHS is identified [7]. 
Notice that the mean embedding vector itself is not a 
probability density distribution. For a given pdf, each different 
kernel type captures different forms of „moments“ - those 
usually do not coincide with the definitions of skew, kurtosis, 
etc. Also: the mean embedding depends on the parameters of 
the kernel, i.e. the mean embedding of a random variable using 
the Gaussian kernel is dependent on the bandwidth B. Since 
the design of our Kernel Transform will be based on the 
covariance terms 

! 

E "(Xi )
T #"(Xj )[ ] between feature vectors of 

scalar random variables 

! 

Xi  and 

! 

Xj , the covariance terms 
using the Gaussian invariant kernel are now defined as: 

 
E !(Xi )

T !!(Xj )"# $%= E k(Xi & Xj )"# $%=

= E e&2B(Xi&X j )"
#

$
%=

2B( )n E e&B!Xi
2

!Xi
T X j !e

&B!X j
2{ }

n"

#'
$

%(

n!n=0

N=)

*  

 
It is apparent from the above, that for any type of 

characteristic Mercer kernel the covariance 

! 

E "(Xi )
T #"(Xj )[ ] = E k(Xi $ Xj )[ ]  between any two elements 

in the vector X measures the similarity by averaging weighted 
joint moments of 

! 

Xi  and 

! 

Xj . Higher order statistical 
dependencies are thus incorporated into the design of the 
Kernel Transform. 

III. THE KERNEL KLT/PCA TRANSFORM 

A. KLT/PCA 
Given the zero-mean random input vector variable 

! 

XT = X1 . . XL[ ]  of size L, the standard KLT/PCA 

diagonalizes the covariance matrix 

! 

CXX . Here, the covariance 
terms are defined by the expected values of the outer vector 
product 

! 

X " XT . To derive PCA transform matrices E the L 
eigenvectors vi and eigenvalues λi of the covariance matrix are 
obtained by solving the eigenequations 

! 

"i # vi =CXX # vi  . All 
eigenvectors vi are entries into columns of the matrix E and all 
eigenvalues λi into the diagonal matrix Δ, such that 

! 

" = ET #CXX #E   . A particular data input vector x is 
transformed into a PCA coefficient vector using the 
orthonormal eigenvector matrix E by 

! 

c = ET " x  .The 
eigenvalues are the variances of the coefficients contained in 
random vector c. Since the covariance matrix Δ of the 
coefficients is diagonal, the coefficients are pair wise 
uncorrelated. We recall that the linear transformation 

! 

" (.)

! 

" (.)
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! 

c = ET " x  is energy preserving 

! 

E ci
2[ ]

i=1

L

" = E xi
2[ ]

i=1

L

"  and 

preserves the Shannon entropy of the source vector X,  
H(X)=H(C) [1]. 
 

B. Kernel PCA 
The basic idea related to Kernel PCA as introduced by 
Schölkopf et al [5] is the expansion of the input data vector x 
into a high dimensional space using feature vectors of Mercer 
kernels. Once the covariance matrices are constructed or 
estimated these matrices are diagonalized using the above 
eigenvector and eigenvalue approach. We have i=1...M 
samples 

! 

xi of random vector source X, 

! 

xi " RL , available as 
training data to construct the Kernel PCA transform matrix. In 
contrast to PCA the non-linear Kernel PCA approach 
diagonalizes the so-called Kernel Gram matrix of the sample 
vectors. To this end each measured data vector is transformed 
into a feature vector 

! 

xi "#(xi ). The Kernel Gram matrix G 
is constructed by employing inner products between all feature 
vectors: 
 

G!! =

k(x1, x1) . . k(x1, xM )
. . . .
. . . .

k(xM , x1) . . k(xM , xM )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 

 
We assume that the Mercer theorem applies. Since we have M 
data samples of X, the size of the matrix is (MxM). The 
eigenvalue equation 

! 

"i # vi =G$$ # vi  is solved which 
involves the calculation of M eigenvectors and M eigenvalues. 
Notice, that the Kernel PCA approach thus generates as many 
transform coefficients as there are data sample vectors in the 
training set (M coefficients). The amount of training samples is 
usually very high (M>>L), which makes this approach not 
directly suitable for coding applications – since the 
coefficients (or subsets thereof) need to be coded and 
transmitted/stored. Additional problem is the “flat” distribution 
of the variances of the coefficients – the Kernel PCA is usually 
not compact. In addition the “pre-image” problem, which 
handles the reconstruction of the data in Hilbert space, is in 
general an ill-posed problem [6]. The Kernel PCA also does 
not preserve the Shannon entropy. 
 

C. The Proposed Kernel KLT/PCA Transform 
Rather than expanding a random vector variable 

! 

XT = X1 X2 ... XL[ ]  using the non-linear expansion 

! 

"(X)  we expand each component 

! 

Xl , which results in a 
feature matrix of possibly infinite dimension, 

! 

"(X) = #(X1) #(X2 ) ... #(XL )[ ] . The covariance matrix 

C!! = E !T (X) "!(X)#$ %&  is a LxL matrix and captures the 

desired higher order moments between the vector elements. By 
virtue of the Mercer theorem this matrix can be calculated 
using the kernel functions even if the features are of infinite 
dimensions. A consistent and efficient estimator using M 
vector samples 

! 

x jT = x
1

j x
2

j ... x
L

j[ ] from measured data 
is given by: 
 

! 

ˆ C "" =
1
M

k(x1
j , x1

j ) k(x1
j , x2

j ) . . k(x1
j , xL

j )
k(x2

j , x1
j ) k(x2

j , x2
j ) . . .

. . . . .

. . . . .
k(xL

j , x1
j ) . . . k(xL

j , xL
j )

# 

$ 

% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 

j=1

M

)  

 
The transform matrix E is derived by calculating the 
eigenvectors of 

! 

ˆ C "" . Notice, that the number of eigenvectors 
generated is – as desired - not dependent on the number M of 
data samples used for training the matrix.   
 
Let E and 

! 

"  be the matrices containing the eigenvectors and 
eigenvalues respectively of 

! 

ˆ C "" . For coding purposes our task 
is to transmit input vector x to the receiver. The input to the 
coding approach is the vector 

! 

xT = x1 x2 ... xL[ ] . 
However, our strategy using the derived Kernel Transform 
now involves the prior transformation of the data input vector 
into a feature vector matrix 

! 

"(x) = #(x1) . . #(xL )[ ]  
(size LxN), N being the dimension of each feature vector. This 
vector matrix is then transformed into a coefficient matrix Co 
(LxN) using the eigenvector matrix E, 

! 

Co = "(x) #E  .  
 
Notice, that the i’th column of Co, coefficient vector 

! 

Coi  is 
the weighted sum of the input feature vectors  

! 

Coi = "(x) # ei = ei,k #$(xk )
k=1

L

%   . Our developed strategy 

would thus involve calculating feature matrices of possibly 
infinite dimensions and to code/transmit coefficient matrices 
Co of possibly infinite dimensions. Since this is not a feasible 
approach we use the Mercer theorem to kernelize the feature 
input matrix. Consider a set of feature vectors 

! 

"T (cl ) 
expanding arbitrarily chosen centers 

! 

cl . Rather than coding 
coefficient vector 

! 

Coi we may encode the scalar coefficient 
 

! i = "l !#
T (cl )

l="#

#

$
%
&
'

(
)
*
Coi = ei,k ! "l ! k(cl, xk )

l="#

#

$
k=1

L

$  

 
By using a small number of appropriately chosen non-zero 
coefficients 

! 

"l  a suitable coding approach is derived that 
allow transmission of scalar coefficients 

! 

" i  to the receiver. For 
i=1…L the matrix equation 

! 

" = ET # k  is constructed with 
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! 

kT = "l # k(cl , x1)
l=$%

%

& ,..., "l # k(cl , xL )
l=$%

%

&
' 

( 
) 

* 

+ 
,  as input vector. The 

elements of x are thus  “kernelized” prior to transformation. 
 
In a coding scenario we transmit coefficient vector 

! 

"  and 
reconstruct 

! 

k  at the receiver. However, the final goal is to 
convey the amplitudes of vector x from 

! 

k , which is feasible 
using appropriate choice of 

! 

"l  and 

! 

cl . One particular choice 
seems attractive for our purposes: we recognize that the term 

! 

"l # k(cl , xk )
l=$%

%

&  can be designed to approximate each 

! 

xk  with 

arbitrary precision, such that 

! 

"l # k(cl , xk )
l=$%

%

& = xk . What 

follows is that now we can use vector x directly as input to our 
liner transform, that is: 

! 

" = c = ET # x . This is a somewhat 
unexpected but very fortunate design option using the 
kernelization approach. We do not have to kernelize the input 
vector x in order to perform a transform using the Kernel 
Transform. In particular we do not have to recover x from 

! 

k  
at the receiver. The transform matrix E replaces the one that 
would have been derived using the standard PCA approach on 
a conventional covariance matrix. We simply compute the 
eigenvectors based on another, more suitable covariance 
Toeplitz matrix. Everything else in the transform coding 
scenario remains the same. We stress that the resulting 
orthonormal Kernel Transform 

! 

c = ET " x  is, as with PCA, 
energy preserving and preserves the Shannon entropy of the 
source vector. 

IV. PERFORMANCE EVALUATION 
 

In order to evaluate the performance of the suggested 
Kernel Transform approach (S-KPCA) M=1000 training data 
sample vectors of various length L were captured from 
horizontal scan lines of test images. Here we report on results 
for the test images  “Lena” and “MRI”. An equal amount of 
sample data vectors were taken from the images and used for 
testing. For both S-KPCA and standard PCA/KLT the 
appropriate covariance matrices were constructed and 
respective transform matrices E calculated. Different matrices 
E were generated for different length L of the input vectors. For 
generation of the covariance matrix of the S-KPCA approach 
the above invariant 1-D Gaussian kernel was used with 
bandwidth B=0.0006. As expected the choice of the bandwidth 
has a significant impact on the performance of the S-KPCA. 
However, the selected bandwidth proofed sufficient for the 
evaluation at hand. The choice of the kernel seems less 
important. 

How do we evaluate the capability of a transform for 
reconstructing the fidelity of a signal x - using a sub-set of 
coefficients? Since we are interested in reconstructing 
statistical information including higher order moments, the 
traditional 2nd order statistics means-squared-error approach 
(or using the coding gain [1]) would not provide any insight 

into the capability of S-PCA. PCA would always outperform S-
KPCA using such measures. 
 
Figure 1 illustrates the capability for reconstructing the 1-D 
probability density function 

! 

p(Xi )  of an individual element in 
vector X. 

! 

p(Xi )  was calculated using a 1-D Kernel density 
estimate with a Gaussian kernel. The S-KPCA design 
approach attempts to optimize the capability of each transform 
coefficient - with the goal to providing a better fidelity 
contribution than PCA for reconstruction of the L-dimensional 
joint pdf 

! 

p(X).  
 

 
 

Figure 1: Reconstructed 1-dimensional pdf 

! 

p(X1) of the 
first element in vector X based on a subset of coefficients 
with highest variance (test image “Lena”), L=128.  

Visual inspection of 

! 

p(X1) (of the first element of vector X) 
reveals that using S-KPCA on test image “Lena”  (here as an 
example with L=128) the reconstruction with the first 8 out of 
128 coefficients of highest variances already provides support 
for the three main modes of the desired original distribution. 
PCA requires significantly more coefficients to achieve this 
goal. The result in Figure 1 already provides insight into the 
capability of the S-KPCA approach. However, only a 
separated element Xi was captured and it is possible that other 
elements do not benefit from the approach or even suffer. Here 
we propose to employ a fidelity criterion that measures the 
distance between the reconstructed L-dimensional density 
function (of reconstructed random vector X) and the original 
distribution of X. Traditional criteria include the Kulback-
Leibler measure, Kolmogorov distance and the like [8] but 
require explicit estimation of the L-dimensional density. It is 
known that approaches like the above Kernel Density 
Estimation are not capable of dealing with higher-dimensional 
distributions sufficiently.  
 
With the introduction of the kernel embeddings, however, it is 
possible to measure distances in RKHS without explicit 
density estimation. The so-called Minimum Mean Distance 
(mmd) between two mean embeddings is defined as [7]  
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mmd = µx !µY
2
= µX

Tµx +µY
TµY ! 2µX

TµY

" 1M 2 k(xi, x j )
i, j=1

M

# + k(yi, yj )
i, j=1

M

# ! 2 k(xi, yj )
i, j=1

M

#
$
%
&

'&

(
)
&

*&

 

 
and measures the difference between L-dimensional 
distributions p(X) and p(Y) in RKHS. mmd=0 if p(X) and p(Y) 
are identical. A sufficient estimator of mmd uses M samples of 
vector X and kernelizes the mean embeddings accordingly. 
Figure 2 depicts the mmd measures for S-KPCA and PCA for 
test images “Lena” and “MRI”.  
 

 

 
 

Figure 2: Top: Cummulated mmd distance in RKHS 
between L-dimensional pdf 

! 

p(X) of the reconstructed of 
vector X and the pdf of the original. “Lena” (top) and 
“MRI” (bottom).  ___  S-KPCA, _ _ PCA, * Original. 
 

It is apparent that both S-KPCA and PCA are also compact in 
terms of mmd using accumulated coefficients. S-KPCA for 
images “MIR” and “Lena” significantly outperform PCA 
based on the mmd measure. Similar and consistent results 
were obtained for other test images and for different length L 
of the transform. Notice, that mmd measures distances in L-
dimensional RKHS, with L=128 and L=64 respectively. 
Further results not presented in this paper indicate that S-

KPCA also preserves the compactness of PCA in regard to the 
variances of the coefficients. This is a good indication that S-
KPCA coefficients may be coded with excellent rate-mmd 
performance 

V. SUMMARY, CONCLUSION AND OUTLOOK 
 
The novel Kernel PCA/Kernel KLT transform (S-KPCA) 
introduced incorporates higher order statistics into the design 
of the transform matrix using a Reconstructing Kernel Hilbert 
Space (RKHS) approach. In contrast to the well-known Kernel 
PCA the number of the generated transform coefficients of the 
suggested approach is not dependent on the size of the training 
set and the “pre-image problem” is avoided completely. First 
results indicate that the derived transform is more compact 
than the standard PCA/KLT in terms of the mmd fidelity 
measure in RKHS. The 1-dimensional S-KPCA transform 
introduced above can be readily extended towards higher-
dimensional transforms in image and video processing and 
coding. The large variety of kernels available in literature 
allows the employment of S-KPCA for compression purposes 
far beyond continuous amplitude sources – examples include 
compression of text, binary sources, etc. Even though the 
introduced Kernel Transform is mainly discussed in the 
context of transform coding applications, it is understood that 
potential applications are in all fields covered by the traditional 
PCA, including feature dimensionality reduction, noise 
reduction and the like. 
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