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ABSTRACT

Sparse motion estimation with local optical flow methods is
fundamental for a wide range of computer vision applica-
tion. Classical approaches like the pyramidal Lucas-Kanade
method (PLK) or more sophisticated approaches like the Ro-
bust Local Optical Flow (RLOF) fail when it comes to en-
vironments with illumination changes and/or long-range mo-
tions. In this work we focus on these limitations and propose
a novel local optical flow framework taking into account an
illumination model to deal with varying illumination and a
prediction step based on a perspective global motion model
to deal with long-range motions. Experimental results on
the Middlebury, KITTI and Sintel optical flow benchmarks
demonstrate the superior performance of the proposed frame-
work.

Index Terms— Optical Flow, RLOF, KLT, Feature Track-
ing, Global Motion Model, Illumination Model

1. INTRODUCTION

35 years after Lucas and Kanade published a gradient based
local optical flow method [1] known as LK method and 16
years after Bouguet proposed the pyramidal Lucas Kanade
(PLK) [2] which is most of the time used nowadays when
speaking about the Lucas-Kanade method e.g. for the KLT
tracker, the LK and PLK method play a fundamental role in
many video-based computer vision applications. The PLK
method belongs to the class of local optical flow methods
and is competing with a wide range of global optical flow
approaches [22]. In general global optical flow methods gen-
erate highly accurate and dense motion vector fields due to a
global spatial coherence [4, 3] which pose the problem of mo-
tion estimation as the optimization of a global energy func-
tional on the whole image data. The main disadvantage of
global methods is that they are computational expensive.

For many applications in the field of video-based surveil-
lance, medical imaging, video coding, robot navigation, aug-
mented reality and video classification dense motion fields are
not required instead only a small set of motion vectors are
needed. In most of these systems computational efficiency,

i.e. the real-time requirement, is a crucial aspect. For these
applications global methods can become insufficient due to
their high run-time and high computational complexity that is
similar for small and large motion vector sets. In contrast, lo-
cal methods are based on a local spatial coherence constrain
and take into account only data of a limited region the so-
called support region. In [5] it has been shown that for sparse
motion fields local methods are competitive to state-of-the-
art global solutions. These methods are due to the support
region linear scalable with respect to the size of the motion
vector set, i.e. linearly correlation between the computational
complexity and the number of motion vectors to be estimated.
This is an outstanding property of in general local optical
flow methods which make these methods favorable for many
practical video-processing solutions and motivates us in our
research about a fast and accurate robust local optical flow
method.

Recent research on local optical flow methods has been
focused on improving the run-time performance, e.g. by par-
allelization through GPU implementations [6, 7] or more ef-
ficient numerical schemes [8, 5] and on improving the preci-
sion of the motion estimates. Therefore in [9, 10, 11] robust
estimation frameworks dealing with statistical outliers have
been introduced. Other work addresses the generalized aper-
ture problem, see Black and Anandan [12], and propose to
modify the support region, e.g. by Gaussian and Laplacian of
Gaussian weighting functions [13], adapting region sizes [11]
or adapting region shapes [14].

In this paper, we focus on the problem of estimating long-
range motions in environments with varying illuminations
which still is a limitation for local optical flow methods. In
order to improve the accuracy of estimates with large motion,
we propose to initialize the local method by predictions ob-
tained from a global motion model. Therefore, we propose
a perspective global motion model which is estimated from
a sparse set of motion vectors. The peculiarity in this case
is that this model allows to predict long-range motion scales
from small motion estimates. In the following we provide
a general framework to apply the predictions of the global
motion model in order to improve the accuracy of local op-
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Fig. 1. Example from KITTI training set containing illu-
mination changnes (sequence 15). Input and ground-truth
(top), color-coded motion fields and error maps where dark
blue denotes small and red large end-point error shows results
of RLOF without (left) and with linear illumination model
(right).

tical flow methods. An implementation will be given based
on our previous work on Robust Local Optical Flow (RLOF)
[11, 14]. The paper is organized as follows: In Section 2 we
extend the baseline RLOF by implementing a linear illumi-
nation model proposed by [15] in order to handle scenes with
varying illuminations. Section 3 describes a novel scheme
which uses predictions form a perspective global motion
model to initialize the local optical flow methods. Finally, the
experimental results are given in Section 4.

2. LINEAR ILLUMINATION MODEL

The Intensity Constancy Assumption (ICA) [4] is the funda-
mental assumption for most optical flow methods although it
almost never holds in real-life scenarios. For example in se-
quences that contain varying illuminations caused by shad-
ows, moving light sources or changing weather conditions
the ICA is violated. In the field of global optical flow sev-
eral extension of the ICA have been proposed in order to
deal with varying illuminations. For example Brox et al.[16]
invented an additional gradient constancy constraint that is
more robust to varying illuminations, Mileva et al.[17] com-
bined Brox’s approach with photometric invariances and in
[18] a texture structure decomposition pre-processing step has
been proposed. As stated by Kim et al.[10] for these methods
parameters have to be tuned carefully in order to obtained de-
sirable results.

In this work, we use an extended ICA based on a linear
illumination model proposed by Gennert and Negahdaripour
[15] which has been previously applied in [10] for local opti-
cal flow based on the Least Median of Squares (LMS) estima-
tor. The ICA model proposed by Gennert and Negahdaripour
is defined as follows:

I(x, t) +m · I(x, t) + c = I(x + d, t+ 1), (1)

with I(x, t) and I(x + d, t+ 1) being image intensity values

of two consecutive images, d the motion vector and m and c
the parameter of the illumination model at a position x. Like
ICA, Eq. (1) is solved by a first-order Taylor approximation.
For the local optical flow the local motion constancy assump-
tion has to be extended by assuming that the whole parameter
vector [d m c]T is constant in a small support region Ω. Let
∇I(x) be the spatial and It(x) the temporal image gradient,
w(x) a weighting function and ρ a norm, then the resulting
parameter vector is a vector that minimizes:

min
[d m c]

∑
x∈Ω

w(x) · ρ

T (x) ·

 d
m
c

− It(x),σ

 (2)

with T (x) = [∇I(x) − I(x) − 1]T . This equation defines
an M-Estimator solution which is derived from the general-
ized gradient-based optical flow equation [11]. If ρ(x) = x2,
w(x) = 1 and m = c = 0, Eq. (2) denotes the Lucas Kanade
formulation [1].

Please note that the following derivations are phrased in
general terms to be applicable for a variety of local optical
flow methods. For this paper we apply these derivations for
the CB-RLOF where the weighting function w(x) is used
to implement the support region shape that correspond to
the underlying color segment as proposed in [14]. To cope
with small linearization errors, an iterative Newton-Raphson
fashioned scheme proposed by Bouguet [2] for the Lucas
Kanade method and described in [11] for the RLOF is ap-
plied to the solution of Eq. (2). Starting from the initial values
[d0 m0 c0]T , this scheme updates the parameters iteratively
with:

[di+1 mi+1 ci+1]
T

= [di mi ci]
T

+ [∆di ∆mi ∆ci]
T
. (3)

until convergence or a given maximal number of iteration has
been reached. If the so called influence function ψ = ρ̇ is a
composite of linear functions, which holds for the RLOF and
the PLK then Eq. (2) can be solved directly so that the new
incremental motion and illumination parameters are given by:

[∆di ∆mi ∆ci]
T

= G−1
IM · bIM,i

bIM,i =
∑
x∈Ω

w(x) · T (x) · ψ (It,i(x))

GIM =
∑
x∈Ω

w(x) · T (x) · ψ
(
T (x)T

)
(4)

with the iterative update of the temporal gradient:

It,i(x) = I(x + di, t+ 1)− I(x, t) · (1−mi) + ci. (5)

In this work we will implement this scheme for the RLOF
[14] by apply ρ being the shirnked Hampel norm. As stated
in [11] the advantage of using the shrinked Hampel norm and
the M-estimator is that the estimate is robust and less com-
putational complex than the LMS proposed in [10]. Figure 1
gives an example of the improvements achieved for the linear
illumination model in contrast to standard ICA.



Fig. 2. Example from KITTI training set containing large dis-
placements (sequence 147). Input images (left) color-coded
motion field of the baseline RLOF (top right) and the corre-
sponding error map (bottom right) where dark blue denotes
small and red large end-point errors.

3. GLOBAL MOTION ESTIMATION

A major challenge for local optical flow methods is to deal
with nonlinearities of the ICA or respectively the nonlinear-
ities of the linear illumination model. Accurate motion es-
timates can be only achieved if the linearization by the first-
order Taylor approximation is reasonable for the data. In real-
world this holds on average for rather small displacements
around a few pixels. As a result there is a subsequent diffi-
culty in dealing with long-range motion.

The standard approach to deal with long-range motion is
to embed the motion estimation in a coarse-to-fine scheme
[12]. Therefore a pyramid of repeatedly low-pass filtered and
down-sampled images is build. The optical flow estimation is
started at the coarsest level and its result is used to initialize
the iterative refinement, see Eq. (3) and Eq. (4), of the next
level etc. until the finest pyramid level. This technique is ef-
fective for the PLK and RLOF but a drawback is that errors of
the intermediate results are multiplied during the up-scaling
to the next level. Erroneous intermediate results occur on the
top level due to various reasons, e.g. image details can get
lost and more homogenous areas can appear due to the re-
peated low-pass filtering which results into wrong estimates,
see aperture problem. As a result the motion estimation fails,
which is shown in Figure 2. The figure shows the result of the
RLOF for sequence 147 of the KITTI benchmark [19]. The
visualization of the error map has been provided by the KITTI
website. Dark blue denotes locations with small end-point er-
rors and dark red with large errors.

The idea of this paper is to use an initial guess predicted
from the global motion of the scene instead of 0̄ to better deal
with long-range motions. If a video sequence contains cam-
era motion there can be found a parametric transform of the
image that correspond to this global motion. The process of
estimating the transform parameters is called global motion
estimation (GME) and should not be confused with global
optical flow estimation. There exists various practical 2-D
parametric global motion models, a detailed evaluation can
be found in [20]. The most general is the eight-parameter
perspective model which can be derived from 3-D affine mo-

Fig. 3. Color-coded motion fields and error maps for se-
quence 147 of a motion field predicted with GME (left) and
RLOF using the predicted field (right).

tions of objects under a perspective camera model. The eight
perspective parameters m = [m0, . . . ,m7] can be estimated
with at least four motion vectors. If the transform parameters
m are known this models can be used to predict an optical
flow field by the following function:

dGM (x, y) = fGM (x,m) =

[
m0·x+m1·y+m2

m6·x+m7·y+1 − x
m3·x+m4·y+m5

m6·x+m7·y+1 − y

]
(6)

where dGM (x, y) denotes a predicted motion vector at a po-
sition x = (x, y). The left row in Figure 3 shows an example
of a predicted dense motion field using GME. Especially for
scenes with a global motion that represent large and small
motion components e.g. zooming, this approach can be used
to predict long-range motion from a sparse set of short-range
motion estimates. The predicted optical flow field can now be
used to initialize the pyramidal iterative scheme on the coars-
est level, i.e. [d0 m0c0] = [dGM 0 0]. The resulting motion
field is shown in the right row of Figure 3. This examples
show a tremendous improvement for the motion estimation
for scenes with long-range motions.

To apply the GME prediction the following steps have to
be performed. The goal is to estimate a set S = {d0, . . . ,dn−1}
of nmotion vectors at defined locations P = {x0, . . . ,xn−1}
with a motion estimation function f : P → S. In a first step a
small set SR of motion vectors located at a regular grid will be
estimated with the PLK method. Note that PLK and RLOF
integrate the linear illumination model. For each vector a
forward-backward confidence [11] will be estimated. Erro-
neous vectors are than removed if the confidence distance is
above one pixel. In the second step perspective global model
parameters m are estimated using SR and the well-known
RANSAC [21]. Within these parameters a set of predicted
motion vectors SGM = {dGM0 , . . . ,dGMn−1} will be estimated
following fGM : P → SGM . The final motion vector set S
is then computed with the RLOF and [d0 m0c0] = [dGM 0 0]
the initial guess values on the coarsest level.

4. EXPERIMENTAL RESULTS

In this section we evaluate the proposed global motion esti-
mation (GME) and linear illumination model (IM) for local



Middlebury KITTI SIntel

Fig. 4. Evaluation results on training sequences of Middlebury [22], KITTI [19] and Sintel [23] optical flow benchmarks.
The plots show the average end-point error and for the KITTI dataset the R3 measure over η, the percentage of successfully
estimated motion vectors, validated with forward-backward confidence.

Middlebury KITTI SIntel
η0.5 η1 η0.5 η1 η0.5 η1

PLK 0.300 1.269 0.195 23.123 12.541 22.496
CB-RLOF 0.264 0.816 0.187 21.362 9.742 17.226
IM-CB-RLOF 0.232 0.706 0.158 19.729 3.081 11.640
GME-IM-CB-RLOF 0.230 0.611 0.158 9.426 2.343 10.374

Table 1. Average end-point error results of dense motion
fields η1 and sparse motion field with 50% outlier rejection
η0.5 for the training sequences of recent optical flow datasets.

optical flow methods. The proposed extensions have been
integrated into the existing cross based Robust Local Opti-
cal Flow (CB-RLOF)1 method [14]. Beside the CB-RLOF,
the PLK2 will be the benchmark for this evaluation. The ex-
periments have been performed on the training sequences of
the Middlebury [22], KITTI [19] and Sintel [23] optical flow
datasets. For each method we use the same basic configura-
tions, i.e. 3 pyramid levels, Ω = 19× 19 support region size,
30 maximal number of iterations. For the cross based RLOF
the minimal support region size is set to 9 × 9 and the color
threshold τ = 35.

The main field of application will be the estimation of
sparse motion vector sets. Therefore we perform this eval-
uation based on a simple feature tracking framework which
includes a motion vector validation (outlier filering) step to
remove erroneous estimates. Following [11, 5, 14] forward-
backward confidence is applied to validate the motion esti-
mates.

Figure 4 shows the averaged tracking performance plot
[11] for each of the datasets. This plot shows the AEE and for
the KITTI the R3 measure of a subset of motion vectors val-
idated by the forward-backward confidence measure where η
denotes the percentage of not removed vectors, low AEE and
high η are preferable. Table 1 shows the numerical results
by the average end-point error for the three datasets. The ta-
ble shows the mean AEE computed for the dense motion field

1available at http://www.nue.tu-berlin.de/menue/forschung/projekte/rlof/
2available at http://www.opencv.org (v.2.4.9)

(η1) and the sparse motion fields. The sparse motion field
consist of 50% of the best motion vectors evaluated with the
forward-backward confidence (η0.5). The results show that
for sparse and dense motion vector fields there are tremen-
dous improvements in terms of accuracy for the proposed
GME-IM-CB-RLOF compared to the PLK and the baseline
CB-RLOF. Especially for the challenging KITTI and Sintel
datasets the improvements are significant and the results of
the outlier filtered sparse field are competitive with state-of-
the-art global methods [19, 23]. Our final approach requires
8 seconds for the dense field for Sintel’s Cave 2 sequence
(1024 × 436). The test are running on a Intel i7 3.40 GHz
CPU. However the field of application will be the estimation
of sparse motion. For a sparse motion vector set of 1.000 we
achieved 0.3 seconds and for 10.000 motion vectors 0.5 sec-
onds where 0.26 seconds are spend to estimate the GME.

5. CONCLUSION AND FUTURE WORK

In this paper we propose two approaches to improve the ac-
curacy of local optical flow methods. At first we implement
an illumination model to deal with environments containing
varying illuminations. Then we utilize predictions estimated
with a perspective global motion model in order to initialize
the iterative motion estimation scheme and deal with long-
range motions. We have implemented both approaches for
the RLOF method and demonstrated with e.g. an about 56%
lower error for dense motion fields on the KITTI dataset and
an about 76% lower error for sparse motion fields on the Sin-
tel dataset, a significant improvement compared to state-of-
the-art local methods.

It has been shown that the proposed local method and an
outlier filtering step generates highly accurate sparse motion
fields. In the future will further improve the run-time of the
proposed approach e.g. by integrating the semi-direct itera-
tive scheme [5] and provide an implementation based on the
GPU.
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