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Abstract—Optical flow methods integrating sparse point cor-
respondences have made significant contribution in the field of
optical flow estimation. Especially for the goal of estimating
motion accurately and efficiently, sparse-to-dense interpolation
schemes for feature point matches have shown outstanding
performances. Concurrently, local optical flow methods have
been significantly improved with respect to long-range motion
estimation in environments with varying illumination. This mo-
tivates us to propose a sparse-to-dense approach based on the
Robust Local Optical Flow method. Compared to state-of-the-
art methods the proposed approach is significantly faster while
retaining competitive accuracy on Middlebury, KITTI 2015 and
MPI-Sintel data-set.

I. INTRODUCTION

Optical flow estimation is an important component of state-
of-the-art computer vision tools for processing video data.
Especially in the field of global optical flow methods there
is an ongoing progress that leads to new innovative solutions
with high accuracies [1]. With the introduction of the Total
Variation approach by Brox et al. [2] the optical flow based
methods have been proven to be a reliable tool for estimating
dense motion vector fields.

Nowadays approaches successfully cope with the weakness
of classical methods with respect to preservation of motion
discontinuities e.g. by layers [3], changing illumination con-
ditions e.g. by high-order constancy assumptions [4] or long-
range motion usually by multi-scale approaches. In general
global optical flow methods generate highly accurate motion
fields due to a global spatial coherence. This poses the problem
of motion estimation as the optimization of a global energy
function as it takes the whole image data into account. The
main disadvantage of the global approach is that solving this
functional is computationally expensive and thus rather slow.

However, dealing with long-range motion to a large extent
is still an open problem. A major drawback of the multi-scale
schemes is the error-propagation from the coarsest to the finest
scale. Recent approaches for handling large displacements and
avoiding the error propagation are optical flow methods that
are based on integration of feature point matching. Brox et
al. extend the variational framework based on Histogram of
Oriented Gradient (HOG) descriptors and Weinzaepfel et al.
[5] integrate the local information of the point correspondence
by extending the global energy term with a matching term.

However, while their computational complexity is still high,
they reveal the potential of local point matching techniques.

Recent approaches take advantage of sparse-to-dense inter-
polation schemes for feature matches. Revaud [6] proposed
an edge-preserving interpolation filter to retrieve the dense
motion fields from sparse DeepMatches [5]. With 15 seconds
per frame on the KITTI data-set sequences the run-time is still
too high for many computer vision applications. The potential
of this technique to efficiently compute dense motion fields
has motivated the work of Wulff and Black, who proposed
in [7] to reconstruct dense motion fields from sparse fields
with a highly efficient feature point matching method [8].
With 3.2 seconds per frame on the KITTI data-set sequences
this approach significantly improves the performance w.r.t.
accuracy and run-time.

In our previous work, we focused on the improvement of
the accuracy and run-time performance of local optical flow
methods. Knowing that in general the accuracy of global
optical flow methods is higher than that of local methods
when comparing dense motion fields, we focused on the
fields of application that apply sparse motion information e.g.
tracking, video-based surveillance or video coding. The ability
of performing well at low run-time accounts for the important
role of local methods in these domains as they are scalable
with respect to the number of motion vectors to be estimated.
In recent work, we proposed the Robust Local Optical Flow
(RLOF) [9] as a robust derivative of the well-known pyramidal
Lucas Kanade method [10]. RLOF has been further improved
with respect to the preservation of motion discontinuities [11],
the improvement of the computational efficiency [12] and the
enhancement of the robustness for environments containing
changing illuminations and long-range motions [13]. In [12] it
has been shown that for the evaluation of sparse motion fields
the RLOF method is competitive to state-of-the-art global
ones.

The recent developments on local optical flow methods and
sparse-to-dense interpolation schemes motivate us to propose
a novel sparse-to-dense interpolation scheme based on sparse
sets of motion vectors estimated by the RLOF feature tracking
method.



II. ROBUST LOCAL OPTICAL FLOW

This section describes the RLOF method. The Robust Local
Optical Flow (RLOF) method is a gradient-based local optical
flow method. The goal of this method is to estimate a set
S = {d0, . . . ,dn−1} of n motion vectors d ∈ R2 at defined
locations P = {x0, . . . ,xn−1} with x ∈ R2 with a motion
estimation function f : P → S based on two consecutive
images. In general the motion vector d is fraction of the
parameter vector p that solves the following minimization
problem:

min
p

∑
x∈Ω

w(x) · ρ (g̃(x,p), σ) , (1)

where ρ denotes an arbitrary norm, Ω a local support region
around x, σ its scale parameters, w(x) a prior weighting func-
tion and g̃ the first-order Taylor approximation of an appear-
ance model function g. The intensity constancy assumption
(ICA) proposed by Horn and Schunk [14] is the most common
appearance model. A prominent example is the pyramidal
Lucas Kanade [10] as a part of the well-known Kanade-
Lucas-Tomasi (KLT) tracker [15]. However the assumption
of constancy of the consecutive intensity values I(x, t) and
I(x+d, t+1) almost never holds on real-world video footage.
Therefore we have proposed in [13] a RLOF version based
on a Gennert and Negahdaripour linear illumination model
[16], which showed significant improvements in the presence
of varying illuminations. For the RLOF the motion vector d
is a solution of the following minimization problem:

min
[d m c]

∑
x∈Ω

w(x) · ρ

T (x) ·

 d
m
c

+ It(x), σ

 (2)

with T (x) = [∇I(x) − I(x) − 1]T , ∇I(x) the spatial and
It(x) the temporal image gradients, ρ the shrinked Hampel
norm as introduced in [9] and [d m c]T a parameter vector
with m a multiplicative and c an additive illumination param-
eter. If ρ(x) = x2, w(x) = 1 and m = c = 0 then Eq. 2
describes the Lucas Kanade formulation [17].

To handle long-range motions the multi-scale coarse-to-fine
scheme that starts from the top level of a pair of image
pyramids built on repeatedly low-pass filtered and down-
sampled images and propagates interim motion results from
the coarse to the fine level until the finest level is reached.

To cope with small linearization errors, an iterative Newton-
Rahpson fashion-like scheme presented by Bouguet [10] is
used. Starting from an initial value [d m c]Ti+1 this scheme
updates the parameter iteratively:

[d m c]Ti+1 = [d m c]Ti + [∆d ∆m ∆c]Ti , (3)

where starting from the coarsest level for each level the
iteration is initialized with the results of the previous level.
In [13] it has been shown that a multi-scale approach has its
limitation on estimating very large-range motions. Initializing
the iteration process at the coarsest level with a motion vector
prediction obtained from a previously estimated global motion

model of the scene additionally improves the run-time and
accuracy when estimating long-range motions.

For RLOF, the incremental parameter can be estimated
directly as a solution of Eq. 2 by:

[∆di ∆mi ∆ci]
T

= G−1
IM · bIM,i

bIM,i =
∑
x∈Ω

w(x) · T (x) · ψ (It,i(x))

GIM =
∑
x∈Ω

w(x) · T (x) · ψ
(
T (x)T

)
, (4)

where ψ = ρ̇ is the influence function, i.e. the derivative,
of the shrinked Hampel norm. The weighting function w(x)
implements an adaptive support region that has been intro-
duced in [11] in order to prevent violations of the local motion
constancy assumption and to improve the motion estimation
precision at motion boundaries.

III. SPARSE MOTION ESTIMATION

In this section we will discuss our dense optical flow
approach that is based on the interpolation of sparse motion
vector sets. The approach comprises of a sparse motion estima-
tion framework based on the previously discussed RLOF and a
subsequent image-guided motion vector interpolation. Beside
a high accuracy, the key requirement to each component of
the system is an efficient operation to obtain a low overall
run-time. The sparse motion estimation framework consists of
three subsequent modules: feature detection, motion estimation
and outlier filtering.

The objective of the feature detection is to sample the initial
points P from where to estimate the motion information. This
can be based on the geometry of the image, e.g. on a grid
or on differential signatures of salient image patterns such as
edge-like features. The distribution of the point set P should
allow to reconstruct the overall motion field based on the
corresponding motion vector set S. In this paper we will
evaluate three feature detection methods, namely GRID, GFT
and FAST.

The GRID detector is simply defining the points in P at the
nodes of a regularly sampled grid. The potential advantages
of this method are that the computational effort is negligible
and that the samples have a uniform distribution. As a disad-
vantage, motion vectors are computed at non-cooperative e.g.
homogeneous region and can cause errors. The good feature to
track (GFT) detector [18] evaluates the minimal eigenvalue of
the gradient matrix G, see Eq. 4, if w(x) = 1, T (x) = ∇I(x)
and ψ(x) = x and was developed with respect to the Lucas
Kanade method. The assumption, the minimal eigenvalue of
G to be greater than zero is a necessary condition to solve
the Lucas Kanade as well as the RLOF method. The GFT
detector and pyramidal Lucas-Kanade (PLK) method is known
as KLT tracker. The Features from Accelerated Segment Test
(FAST) [19] is a highly-efficient corner detector and has a
superior run-time performance and thus used in various real-
time applications. The latter two detectors generate sample
points most likely at edge-like and less likely in homogeneous



Fig. 1. Example of interpolation results for different feature detection
methods for the Rubberwhale sequence of the Middlebury data-set. Left
column shows starting points that correspond to valid (green) and filtered
(red) motion vectors. Right column shows the geodesic interpolated dense
motion field. From top to bottom: grid detector, GFT detector and FAST
detector.

regions. The main disadvantage is that this can lead to missing
motion information in regions with weak textures but which
are strong enough to provide reliable motion information.

For each location x ∈ P a motion vector is estimated by
applying RLOF. However, it is unavoidable that the estimates
contain errors. Confidence measures are an indicator of cor-
rupted motion estimates and are used to automatically post-
filter unreliable results. The forward-backward confidence is
a well-established measure that is based on the end-point dis-
tance between the motion vector d estimated for the forward
path from I(x, t) → I(x, t + 1) and the motion vector dB

estimated for the backward path I(x, t+ 1)→ I(x, t) with:

EPFB(x) = ||d(x) + dB(x + d(x))||. (5)

Although it requires a dual estimation of the motion vectors,
it is rarely coupled to systematic errors that undergo the
RLOF estimation, as the boundary conditions of the backward
estimation differ from the forward estimation. In the final
motion vector set MV = {d(x) | ∀x ∈ P,EPFB(x) < tFB}
is a filtered set S in respect to the corresponding forward
backward error EPFB .

Figure 1 shows an example of the reconstructed dense vector
fields, based on GRID, FAST and GFT feature detections and
corresponding motion vectors. This example demonstrates the
significance of a well distributed motion vector set. Comparing
the motion field at the red wheel shows that FAST and GFT
sample too sparsely at these locations.

IV. MOTION VECTOR FIELD INTERPOLATION

In this section we will discuss four motion field interpolation
methods that have shown to be computationally efficient and
accurate. The goal of these methods is to estimate a dense
motion vector field from the sparse motion vectors set MV .

The geodesic nearest neighbor interpolation (GEO) is a
highly-efficient image-guided method. The GEO method is
based on the geodesic distance [20]. The geodesic distance
between the two image locations x0 and x1 is defined as:

D(x0,x1,∇I) = min d(x0,x1), (6)

with

d(x0,x1) = inf
Γ∈Px0,x1

∫ l(Γ)

0

√
1 + γ2 · (∇I(r) · Γ′(r))2

dr

(7)
where Px0,x1 is the set of all possible paths Γ between x0

and x1, Γ′(r) denotes the normalized tangent of the path
and γ is a parameter that defines the influence between the
gradient and spatial distances. In practice, geodesic distance
is computed as the shortest path in an image graph created
from the corresponding image. The image graph consists of
nodes V (x) that correspond to all pixel positions x and where
each node is connected to its four adjacent neighbors. The
weight we(x,xN ) of the edge between the node at x and the
neighboring node xN is defined as:

we(x,xN ) =
√

1 + γ2 · ||IRGB(x)− IRGB(xN )||2 (8)

The nearest motion vector for a given position x is the motion
vector that corresponds to a node V (xi) with the shortest path
to the node V (x). The search has been implemented by a
parallelized raster scan algorithm.

The edge-preserving interpolation (EPIC) has been pro-
posed in [6] for dense optical flow. The EPIC interpolates
motion vectors by fitting an affine transformation to k nearest
support points which are estimated using the geodesic distance.
Revaud et al. applied geodesic distance on a structured edge
map. To produce highly accurate results they incorporate the
DeepMatcher [5] to get sparse point correspondences. The
EPIC interpolation methods used in this paper will be based
on image gradients instead of these structured edge maps.

Furthermore we evaluate the PCA-flow and PCA-layers
proposed by Wulff and Black [7]. The idea is to approximate
optical flow fields as a weighted sum over a small amount
of basis flow fields. These basis flow fields are principle
components which have been trained offline from a large
database of natural dense flow fields. Both methods reconstruct
a dense motion vector field based on sparsely sampled point
correspondences. Wulff and Black used point correspondences
estimated by a highly efficient feature point matcher from
Geiger et al. [8]. To reconstruct a dense motion field from
a sparse set of motion vectors a regression is applied to find
a valid dense representation that explains the given point
correspondences. In order to improve the accuracy in the
presence of motion boundaries Wulff and Black used an
approach that combines different layers of motion fields.



Fig. 2. Example of different motion vector interpolation methods for Sintel data-set. From left to right and top to bottom: frame 13 ambush 5, ground-truth,
geodesic interpolation, edge-preserving interpolation [6], PCA [7] based reconstruction and PCA-layers [7] based reconstruction.

TABLE I
COMPARISON OF GEODESIC INTERPOLATED DENSE MOTION VECTOR
FIELDS BASED MOTION VECTORS ESTIMATED WITH RLOF AND GFT,

FAST, GRID (SIZE 6) FEATURE DETECTORS, AND ESTIMATED BY
FEATURE POINT MATCHING AS PROPOSED BY GEIGER et al. [8].

Method Middlebury Kitti15 MPI-Sintel
AEE t in sec R3.0 t in sec AEE t in sec

RLOF-GFT 0.95 0.12 58.41 0.22 8.17 0.17
RLOF-FAST 0.54 0.19 43.83 0.41 8.00 0.21
RLOF-GRID 0.35 0.26 38.60 0.53 5.19 0.49
FP Matches[8] 1.30 0.06 43.01 0.10 6.19 0.09

Figure 2 shows the result of the interpolation process with
the different methods on the same set of sparse motion vectors,
the corresponding color image and the ground truth for this
sequence. It is apparent that the flow field of the PCA method
is missing sharp boundaries while that produced with the GEO
method contains the sharpest boundaries.

V. EXPERIMENTS

In this section we want to evaluate the performance of
the proposed sparse-to-dense interpolation scheme based on
RLOF local optical flow method. All experiments have been
performed on the training sequences of the Middlebury [21],
KITTI 2015 [22] and Sintel [23] optical flow data-sets. If
not specified we use default configurations for all applied
methods. In the first experiment we compare the motion
vectors obtained by the RLOF based framework proposed in
section III with point correspondences obtained by the high
performant feature matching method proposed by Geiger et
al. [8] and used by the PCA-flow and PCA-layer algorithm
[7]. The RLOF configuration is as follows: 4 pyramidal levels,
maximal support region size 21, minimal support region size
9, 30 maximal number of iterations, color threshold τ = 35,
tFB = 0.2 for Middlebury and tFB = 0.41 for KITTI 2015
and MPI-Sintel data-set. For the GEO γ = 1000.

Comparing the results in table I shows the RLOF with
grid based feature detector outperforming the feature matching
and the RLOF based on GFT and FAST detections for each
benchmark. The experiments show the significance of the dis-
tribution of the sparse motion information when interpolating
with geodesic method. The main advantage of local optical

TABLE II
COMPARISON OF SPARSE-TO-DENSE INTERPOLATION METHODS BASED ON

RLOF MOTION VECTORS ON A GRID SIZE OF 6 USING GEODESIC
INTERPOLATION (GEO), EDGE-PRESERVING INTERPOLATION EPIC [6],
PCA [7] BASED AND PCA-LAYERS [7] BASED RECONSTRUCTION, AND

REFERENCE PCA APPROACHES AS IN [7].

Method Middlebury Kitti15 MPI-Sintel
AEE t in sec R3.0 t in sec AEE t in sec

RLOF-GEO 0.35 0.26 38.60 0.53 5.19 0.49
RLOF-EPIC 0.33 0.31 34.89 0.61 5.00 0.56
RLOF-PCA 0.55 0.43 39.41 0.73 5.52 0.69
RLOF-PCA-layer 0.50 2.68 36.81 3.41 4.98 3.70

PCA-flow [7] 0.70 0.11 38.60 0.13 5.41 0.13
PCA-layers[7] 0.67 1.76 36.30 2.09 4.74 2.07

flow methods in this process is the ability to determine the
locations of the motion vectors to be estimated.

In the second experiment we compare the interpolation
methods based on geodesic (GEO), edge-preserving (EPIC)1,
PCA-flow [7] and PCA-layers [7]2. As reference we chose
the PCA and PCA-layer method based on feature matching
as it was published in [7]. To our best knowledge this
method is the best compromise between accuracy and run-
time. Figure 3 shows the accuracy and run-time results for
the four interpolation methods. In this experiment we have
used a subset of images for the MPI-Sintel data-set. Interesting
results are shown for the Middlebury and Sintel results where
the error only slightly increases with increasing grid size for
all interpolation methods. In contrast, the run-time reduces
significantly for increasing grid sizes. The outliers at grid size
8 and 9 on the Sintel data-set for EPIC occur due to a gross-
error in the fitting of the local affine transformation. The plot
for KITTI 2015 shows a strong dependency of the accuracy
related to grid size. This strong dependency can be explained
by the strong zoom which is typical for the KITTI data-set.

Table II summarizes the final error and run-time of the
proposed framework with the four interpolation methods and
compares them to the matching based PCA reference methods
as in [7]. In total RLOF-EPIC method shows best performance
when comparing run-time and accuracy. In comparison to
state-of-the-art PCA based approaches significant improve-

1implementation used from https://github.com/opencv/opencv contrib
2available at https://github.com/jswulff/pcaflow
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Fig. 3. Evaluation results on training sequences of Middlebury, KITTI and MPI-Sintel benchmarks. This evaluation shows the dependency of the grid size
for the sparse motion estimation. For the Middlebury and Sintel Sequences the plot shows the average end-point error (AEE) for the KITTI data-set the R3
measure and for the Sintel the performed run-time.

ments could be achieved for the accuracy on Middlebury
and KITTI 2015 data-sets. Compared to the accurate but
more complex PCA-layers approach the RLOF-EPIC approach
performs about 5 times faster on Middlebury and about 3 times
faster on KITTI and MPI-Sintel data. Compared to the less
accurate but very fast PCA-flow approach the RLOF-EPIC
achieved a 2 times lower AEE on Middlebury and an about
9% improved accuracy on KITTI and MPI-Sintel.

VI. CONCLUSION

The motivation of this work was to develop a run-time
efficient optical flow method for dense motion field estimation.
Therefore, we proposed an approach based on interpolating
sparse motion vectors. The interpolation is performed on
motion vectors located at nodes of a regular sampled grid and
estimated by Robust Local Optical Flow method. We studied
different interpolation methods and found the edge-preserving
interpolation to be most suitable. Interestingly, the accuracy
of our method decreases only slightly but the run-time can be
reduced significantly when increasing the grid size. With 0.56
seconds on MPI-Sintel data (1024×436) the proposed method
is one of the fastest approaches compared to the state-of-the-
art that has competitive accuracy.
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