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Abstract

This work applies the Gaussian Mixture Probability Hy-
pothesis Density (GMPHD) Filter to multi-object track-
ing in video data. In order to take advantage of addi-
tional visual information, Kernelized Correlation Filters
(KCF) are evaluated as a possible extension of the GMPHD
tracking-by-detection scheme to enhance its performance.
The baseline GMPHD filter and its extension are evaluated
on the UA-DETRAC benchmark, showing that combining
both methods leads to a higher recall and a better quality
of object tracks to the cost of increased computational com-
plexity and increased sensitivity to false-positives.

1. Introduction

Multi-object tracking is a challenging task in many ap-
plications, e.g. traffic monitoring or surveillance. The Gaus-
sian Mixture Probability Hypothesis Density (GMPHD)
Filter [8] has gained interest in the sonar / radar tracking
community due to its low computational complexity and
its ability to deal with high detection clutter. However,
the constraints in computer vision applications differ from
sonar / radar applications. Especially the comparatively
low detection probability, due to occlusion or other visual
disturbances, leads to problems with the pure tracking-by-
detection scheme of the GMPHD. On the other hand, due to
the availability of images, additional information is avail-
able and can be used to enhance its performance. Once
the existence of an object is known, it can directly be re-
localized by visual correlation. In recent years, starting
from [2] to [3] and [6], the visual single-object tracking
community has made significant advances, making it pos-
sible to robustly track single objects over a long time span
based only on a single annotation in an initialization frame.

Based on a problem analysis, this work proposes a com-
bination of GMPHD and Kernelized Correlation Filters
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Figure 1. Whether a detection z leads to an initialization of a new
track or not, depends on the Alspach distances to the surrounding
tracks (themselves depending on the covariances of their tracks).
In the left example, the covariance of x1 is small, leading to the
initialization of the new track x2. In the right example, the covari-
ance of x1 is larger, such that no new track is initialized.

(KCF), introduced in [6], by sequential multi-sensor fusion.
Afterwards, the original and the extended version are eval-
uated on the UA-DETRAC benchmark. This evaluation in-
cludes some adjustments that have been made to comply
with the requirements of the benchmark.

2. Multi-Object Tracking with a PHD Filter
The basis for the tracker in our work is a GMPHD filter

which follows the tracking-by-detection paradigm and was
presented in [4]. The PHD is the first statistical moment of
a multi-target probability distribution of a random finite set
(RFS) comprising potential multi-target states. It lives on
the single-state space and assigns every point the probability
for existence of a target in that point:

D(x) =
∞∑
n=0

1

n!

∫
p({x, y1, ..., yn})dy1...dyn. (1)

Summing the PHD gives an expectation value of the
number of targets in a given area. Due to the underlying
RFS-character, individual target identities are lost and tar-
get labels have to be obtained separately.
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The GMPHD filter first proposed by [8] uses a set of
Gaussian distributions in order to model the PHD:

Dk =

Jk∑
i=1

w
(i)
k N (x;µ(i)

k , C
(i)
k ) (2)

with Dk as the PHD at time k and µ(i)
k , C

(i)
k , w

(i)
k as the

mean, covariance and weight of the i-th Gaussian.
The GMPHD prediction step where new tracks are ini-

tialized and known tracks are propagated is formulated as

Dk|k−1(x) = b(x) (3)

+
Jk−1∑
j=1

pS(x) · w(i)
k−1 · N (x;µ(i)

S,k|k−1, C
(i)
S,k|k−1)

with b(x) as the birth intensity and µ(i)
S,k|k−1, C

(i)
S,k|k−1

as the parameters for the i-th PHD component propagated
using a linear motion model. pS(x) models a survival prob-
ability but is discarded in our implementation. b(x) is a set
containing a pre-defined Gaussian birth distribution Dbirth

in every position for which a detection has been received
and which has a high distance to known tracks. This is
the case if the Alspach distance [1] to all neighboring ob-
jects exceeds the threshold Tmerge . The Alspach distance
between z and xi is the L2-norm of both, normalized by
the covariance of xi. The covariance of a track thus highly
impacts the initialization of other tracks (cf. Figure 1).

The update step then corrects the predicted Gaussians by
taking into account the received measurement set Zk:

Dk|k(x) = (1− pD) ·Dk|k−1(x) (4)

+
∑

z∈Zk

Jk−1∑
j=1

pD(x) · Lz(x) · w(j)
k|k−1

C +
Jk−1∑
l=1

pD(x) · L(l)
z (x) · w(l)

k|k−1

.

In this term, pD is the detection probability of the sensor,
Lz represents the likelihood for a given pair of detection and
track and C is the sensor clutter. In order to maintain object
labels, a label tree implementation [7] is used.

3. Visual Single-Object Tracking with Kernel-
ized Correlation Filters

The visual tracking scheme used in this work is similar
to the Fast Scale Space Tracking scheme of [3] and uses two
separate models for estimating target translation and scale.

We use FHOG-features[5] from P. Dollár’s computer vi-
sion toolbox1, a Gaussian kernel-KCF for translation esti-
mation and a linear kernel filter for scale estimation2.

1https://github.com/pdollar/toolbox/
2https://github.com/klahaag/cf_tracking/

Initialization

Given the position and size of the target in the initial frame,
FHOG features are extracted from a region of 2.5 times its
size and weighted by a cosine window in order to highlight
the target in the center and to avoid boundary issues. A
circulant matrix is used to describe all possible shifts of the
target from the initial base sample.

With α as the coefficients to be learned and the discrete
Fourier transform (DFT) F, the fast learning equation is

α̂ =
F(y)

F(kxx′) + λ
, (5)

where the division represents element-wise division and (̂)
is a DFT-transformed signal representation. y denotes the
regression targets, i.e. Gaussian functions with their peaks
at the cyclic shift of the corresponding training sample,
slowly decaying to zero for other shifts. kxx

′
denotes the

kernel correlation function between two signals x and x′.
For Gaussian kernels, it is defined as

kxx
′
= e(−

1
σ2
(‖x‖2+‖x′‖2−2F−1(

∑
c x̂
∗
c�x̂

′
c))). (6)

The symbol � stands for element-wise multiplication and ∗

for the complex-conjugate.
After the model x and coefficients α for translation esti-

mation have been obtained, the same is done for scale esti-
mation, but using a linear kernel defined as

kxx
′
= F−1 (

∑
c x̂
∗
c � x̂′c) . (7)

Training samples for scale estimation are obtained as fea-
tures of variable patch sizes with the target as center.

Update

Given the translation model x̃k−1 and coefficients α̃k−1,
learned during initialization or obtained by updates in the
previous frame, the learned object can be found in the next
image patch at time k by extracting the features zk in this
patch and calculating the full detection response r(zk), i.e.
the output for each location in this patch:

r(zk) = F−1
(
k̂x̃z � ˆ̃α

)∣∣∣α̃=α̃k−1
x̃=x̃k−1
z=zk

(8)

The position of the target can be found by a peak in this
response matrix. As proposed in [2], the Peak to Sidelobe
Ratio PSR = rmax−µs1

σs1
serves for detecting tracking failures,

with rmax as the maximum value of the detection response r
and µs1, σs1 as mean and standard deviation of the sidelobe.

If the PSR is above a certain threshold, then the target
is considered found. The model ˆ̃x and coefficients ˆ̃α are
updated by linear interpolation at the target position found.
Scale estimation and model update is done analogously.

https://github.com/pdollar/toolbox/
https://github.com/klahaag/cf_tracking/
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Figure 2. In scenarios with a high density and fast objects, track initialization is hampered in the GMPHD tracking scheme. Top: With the
birth covariance chosen too small, the corresponding detections are not associated to each other. Bottom: With the birth covariance chosen
properly for fast objects, the first track might suppress the initialization of other tracks in dense scenes (tracks denoted by xi,xi+1, . . .

while different hypotheses for the same track i are denoted as x[1]
i ,x

[2]
i ,x

[1,1]
i ,x

[2,1]
i , . . .).

4. Enhanced Multi-Object Tracking with Com-
bined GMPHD and Correlation Filters

The GMPHD filter is a very sophisticated method for
tracking multiple objects, but it also shows some issues.

First, although it can handle missed detections, it is still
prone to them. In case an object has not been detected, only
the part with (1−pD) in equation (4) contributes to the new
state estimation, leading of a divergence of the track covari-
ance. In case detections of other object tracks are nearby,
this divergence leads to confusion which detections belong
to which object tracks, and finally results in ID-switches.

Second, in scenarios with very fast objects, the distance
between the first detection of a new object and its detection
in the next frame can be very large. Therefore, the birth
covariance has to be set to a large value in every possible
direction in order to associate the second detection with the
track. If set too small, single detections will not be associ-
ated with each other, such that for every one of them a new
track is initialized (cf. Figure 2 top).

However, in scenarios with fast objects and a high object
density, the necessarily high birth covariance of a new track
keeps not only the second detection of the desired object in
its merging radius, but also the detections of other newly
appeared objects nearby. The large birth covariance of the
first track thus prevents the initialization of new tracks for
following objects (cf. Figure 2 bottom). The different de-
tections will be considered as multiple hypotheses tracked
at the same time until the algorithm finally decides for one
of them by a converging covariance. This leads to a delayed

track extraction and lower tracking performance.
In order to resolve these issues, the main idea is to use

visual correlation filters and their capability to rediscover
previously known objects in subsequent frames as an addi-
tional information source. Naive inclusion of visual object
trackers into a multi-object tracking scheme (e.g. simply
adding the correlation tracker results to the general detec-
tion set Zk) is dangerous, because it almost naturally makes
the system prone to false-positive detections. Once a vi-
sual tracker is initialized on static false-positive detection,
it tracks it forever, if not handled properly.

To avoid this problem, we propose to introduce an addi-
tional update step particularly for the visual tracking results
right before the regular update step with regular detections.
In this way, the correlation filter and the regular detector
work as in sequential multi-sensor fusion. Because each in-
stance of the correlation filter is dedicated to the specific
object track that it has been initialized on, it can precisely
correct its state prediction and sharpen its covariance. More
precisely, for each detection, a dedicated instance of the cor-
relation tracker is initialized. Each object track using a par-
ticular detection as a hypothesis in its label tree also holds
a reference to the correlation tracker of the detection. Af-
ter the prediction step and when the following image is re-
ceived, this reference is used to perform a correlation filter
update. If the target is found, the result is used to correct
the previous state prediction using the standard Kalman fil-
ter update equations. In case the visual correlation tracker
fails to find its target, nothing changes.

Afterwards, the regular update step with external detec-
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Figure 3. The proposed extension of the GMPHD tracking scheme uses visual correlation filters to perform an additional update step. This
reduces track uncertainty before associating detections and allows successful tracking of fast objects even in dense scenes.

tions follows. Because the correlation filter update is ex-
ecuted on the same image as the external detector, both
sources of information are synchronized, such that no ad-
ditional prediction step between the correlation filter update
and the regular detection update is necessary.

The whole tracking scheme of the proposed extended
GMPHD filter is visualized in Figure 3. Please note that
the additional update step influences only the state predic-
tion and its covariance. The weights of the state predictions
are still only effected by regular detections, i.e. the GMPHD
filter equations remain unchanged and only hypotheses con-
firmed by external detections can get extracted. This avoids
the problem of infinite false-detection tracks.

5. Experimental Results
The pure GMPHD filter and the proposed extension have

both been evaluated on the full and the ”Experienced” test
set of the UA-DETRAC benchmark introduced in [10].

The GMPHD filter depends on robust estimates for cer-
tain parameters and values. For example, the detection
probability pD, i.e. the probability that a real object in an
image is detected by the sensor, is crucial. Furthermore
good estimates for the clutter intensity C and the measure-
ment noise ~ηD of the detector are essential. Additionally,
also the value for the extraction threshold Textract depends
on the quality of the input detections. Usually, those values
are chosen depending of the detection threshold used for the
detector. However, because the UA-DETRAC metrics rely
on a evaluation scheme with changing detection thresholds,
pD, C, ~ηD, and Textract cannot be considered constant.

As a remedy, those values are dynamically estimated
from the used detection threshold TD ∈ [0, 1] before each
evaluation run by linear relationships:

pD(TD) = −mp · TD + pD,0 (9)
C(TD) = pD(TD) · C0 (10)
~ηD(TD) = −mη · TD + ~ηD,0 (11)

Textract(TD) = −mextract · TD + Textract,0 (12)

Together with all other parameters of both methods, the

linear coefficients have been obtained by multidimensional
nonlinear optimization of the PR-MOTA value on a subset
of the UA-DETRAC training set.

The results of the pure GMPHD and the proposed exten-
sion on the UA-DETRAC benchmark are shown together
with the performance of other state-of-the art trackers in
Table 1, where they are denoted as GMPHD and GMPHD-
KCF, respectively. Considering only the PR-MOTA re-
sults, the performance of the plain GMPHD filter and the
GMPHD-KCF is very similar.

The PR-MOTA metric is a metric that combines false-
positives, false-negatives and track-ID-switches equally. A
closer look onto those specific values shows that the equiv-
alence in performance is mainly due to the sensibility of the
GMPHD-KCF to false-positives. Although the GMPHD-
KCF is able to significantly reduce the number of false-
negatives compared to the plain GMPHD filter, this pos-
itive effect is canceled out by the large increase of false-
positives. Considering the order of magnitude of false-
negatives and false-positives, the number of ID-switches
is nearly insignificant for the difference in the PR-MOTA.
However, the positive effect of extending the GMPHD fil-
ter with visual correlation filters is seen when comparing
the results for PR-MT, PR-ML, and PR-FRAG (i.e. mostly-
tracked, mostly-lost, and fragmented). The GMPHD-KCF
shows a significant improvement in the stability of tracked
objects and recall. Furthermore the extracted tracks are less
fragmented compared to the plain GMPHD filter.

Generally, the GMPHD-KCF extracts not only more
tracks than the plain GMPHD filter, the tracks are also more
stable, less fragmented, and extracted earlier. This leads
to lower false-negatives rates and a higher recall. How-
ever, due to the included visual tracking scheme, also false-
positive detections (especially false-positives that repeat-
edly appear in different frames) are tracked and extracted
instead of suppressed as in the plain GMPHD filter. Ad-
ditionally, the increased computational complexity leads to
reduced speed.

Due to the evaluation scheme used for the benchmark,
trackers have to work reliably for both low and high de-



Detector Tracker PR-MOTA PR-MOTP PR-MT PR-ML PR-IDS PR-FRAG PR-FP PR-FN Speed(fps)
Overall Test Set (Easy + Medium + Hard)
CompACT GMPHD-KCF 14.5% 36.0% 14.0% 18.1% 798.8 1606.8 38596.6 174042.7 24.60
CompACT GOG 14.2% 37.0% 13.9% 19.9% 3334.6 7172.4 32092.9 180183.8 389.51
CompACT GMPHD 14.1% 36.3% 13.2% 19.0% 797.2 2143.8 38032.4 177215.1 45.24
CompACT CMOT 12.6% 36.1% 16.1% 18.6% 285.3 1516.8 57885.9 67110.8 3.79
CompACT H2T 12.4% 35.7% 14.8% 19.4% 852.2 1117.2 51765.7 173899.8 3.02
Experienced Test Set (Medium + Hard)

EB GMPHD 14.4% 26.5% 12.3% 18.8% 994.3 1660.4 19627.3 139807.3 41.30
EB GMPHD-KCF 14.1% 25.9% 12.5% 18.5% 909.9 1437.2 21863.7 139245.4 7.74

CompACT GMPHD-KCF 12.0% 33.8% 10.8% 19.5% 648.8 1300.2 30518.1 140669.4 23.10
CompACT GMPHD 11.7% 33.9% 10.0% 20.5% 631.1 1685.2 29574.2 143007.8 48.50

Table 1. Tracking results on the UA-DETRAC benchmark. Methods proposed in this paper are highlighted. CompACT, GOG, CMOT and
H2T are provided by the benchmark. EB has been published in [9], the detections have been generated by its code (available online4).

(a) Plain GMPHD filter (b) GMPHD-KCF
Figure 4. Example situation in the UA-DETRAC training set. Two
cars are close to each other and appear at almost the same time.
The plain GMPHD filter, shown in (a), initialized the track #193 on
the first detection of the black car, but gets confused by detections
of the newly appearing white car, leading to several switches, until
it finally settles on the wrong car. The GMPHD-KCF, shown in
(b), is able to distinguish both objects and track them separately.

tection thresholds. As mentioned, the PHD filter requires
a very careful parametrization, especially regarding clutter
and detection probability, and the used linear dependencies
to the detection threshold are only very rough estimates. Ta-
ble 1 still shows that the overall results are on a similar level
as other state-of-the-art methods. The GMPHD-KCF even
outperforms the best tracker of the benchmark baseline.

6. Conclusions
This work evaluated different issues of a GMPHD fil-

ter regarding typical situations in the UA-DETRAC bench-
mark. In order to resolve them, an extension using a ker-
nelized correlation tracker has been proposed. Both the
baseline and the extended method have been evaluated on
the test set of the benchmark and show very promising re-
sults. The extended GMPHD filter offers a higher recall and
tracks with a higher quality, but this comes at the cost of in-
creased runtime and a higher sensitivity to false-positives.
Future work will include how the robust visual object rep-
resentations, learned by the correlation filters, can be used
to further improve the algorithm.

4http://zyb.im/research/EB/
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