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ABSTRACT

The proposed framework, called Steered Mixture-of-
Experts (SMoE), enables a multitude of processing tasks on
light fields using a single unified Bayesian model. The un-
derlying assumption is that light field rays are instantiations
of a non-linear or non-stationary random process that can be
modeled by piecewise stationary processes in the spatial do-
main. As such, it is modeled as a space-continuous Gaussian
Mixture Model. Consequently, the model takes into account
different regions of the scene, their edges, and their develop-
ment along the spatial and disparity dimensions.

Applications presented include light field coding, depth
estimation, edge detection, segmentation, and view interpo-
lation. The representation is compact, which allows for very
efficient compression yielding state-of-the-art coding results
for low bit-rates. Furthermore, due to the statistical represen-
tation, a vast amount of information can be queried from the
model even without having to analyze the pixel values. This
allows for “blind” light field processing and classification

Index Terms— light field coding, depth estimation, light
field representations, mixture-of-experts, mixture models

1. INTRODUCTION

Due to the curse of dimensionality, higher dimensional im-
age modalities such as light fields (LFs) yield exponentially
larger sets of samples than the lower dimensional modalities,
e.g. still images or video. This results in new challenges for
processing and coding this data. However, the increase of
data allows for much more information to be extracted from
the dataset. Our goal is to find a unified way of processing
higher dimensional imagery that is statistically tractable.

Verhack et al. and Lange et al. proposed the Steered
Mixture-of-Experts (SMoE) framework for images and video
[1][2]. This work proposes the SMoE framework for light
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fields (LFs). The philosophy is deeply embedded in a
Bayesian framework. The underlying assumption is that light
field rays are instantiations of a non-linear or non-stationary
random process that can be modeled by piecewise stationary
processes in the spatial domain. The model takes into account
coherent regions of samples, their segmentation borders, spa-
tial edges, and their development along any of the dimensions.
Here, the process is modeled as a space-continuous Gaussian
Mixture Model (GMM).

We illustrate some of the applications of the SMoE frame-
work for LFs, i.e. edge detection, view inter- and extrapola-
tion, depth estimation, and in particular: light field coding.
An experimental evaluation is provided only for coding due
to the limited scope of this work and the large current in-
terest in the matter. No specific standard for light field im-
ages has been developed yet, it is the current goal of JPEG
PLENO standardization initiative to do so [3]. Furthermore,
SMoE has very beneficial features for coding, as the repre-
sentation (1) is compact because of the sparse structure, (2) is
analytical, continuous and closed-form, which makes SMoE
resolution-independent, (3) allows for all other applications
to be performed straight from the coded model, and (4) prior-
itizes dominant structures over small texture and noise.

Current coding solutions capture the projections of the un-
derlying model at various discrete points in space and time
and store these instantiations of the underlying function using
an image format like JPEG or JPEG 2000, or a video format
for image sequences such as H.264/AVC or H.265/HEVC.
These formats exploit prediction and transform-based coding
paradigms to represent the image or video data. Although
content-adaptivity has proven to improve the compression ef-
ficiency, the fixed hybrid block-based structures have reached
the limit of their potential because of their inflexible pre-
engineered prediction and transform components. During the
ICME Light Field 2016 Grand Challenge 4 out of 5 accepted
submissions were H.265/HEVC-based [4]. The fifth submis-
sion was based on JEM, which is also prediction based us-
ing pseudo-sequences [5]. In the aforementioned techniques,
whenever one view is to be decoded, a series of views that
led to this requested view need to be decoded. The problem
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becomes even more cumbersome when a view is requested
that was not explicitly captured (view-interpolation). Further-
more, the increase of image spatial resolution over the last
decades gives more reason for sparse representations. Uni-
form pixel arrays do not tailor to the local spatial bandwidth
requirements, which can vary heavily across an image.

We drastically depart from traditional block-based,
transformation-based approaches. We propose a novel cod-
ing method for LFs. Our method aims at obtaining a compact
continuous representation of the 4-D light field function. The
encoder modeling and analysis task thus involves estimating
the parameters of a GMM which models the joint probability
density function. The coded file thus contains the parameters
of the model. The expected value of the conditional density
then serves as the regression function. The light field repre-
sentation is reconstructed for any spatial position and viewing
angle using a closed-form regression expression.

Depth map estimation is an important, well studied appli-
cation from LFs. However, our approach is very different of
all others. Most notably, our approach is able to reconstruct
depth indicators directly from the coded model. We illustrate
that our coded representation includes continuous depth in-
formation which could lead to new depth reconstruction tech-
niques. Our approach has the similar goal of estimating con-
tinuous depth maps based on the slopes in epipolar plane im-
ages (EPIs) as in [6]. The slope of the line in the EPI plane are
shown to be related to the depth of the corresponding point in
space [7].

2. STEERED MIXTURE-OF-EXPERTS

2.1. Introduction

In the Steered Mixture-of-Experts (SMoE) framework, the un-
derlying stochastic process of the amplitudes are modeled as
a N -D multi-modal Mixture Model with K modes. This
closed form continuous analytical model is estimated using
e.g. the Expectation-Maximization (EM) algorithm and de-
scribes segments of samples by local N -D Gaussian steering
kernels with global support. As such, each component in the
Mixture-of-Experts steers along the direction of highest cor-
relation. The expected value of the conditional density then
serves as the regression function. Previous work has illus-
trated this idea for image and video luma coding, where the
joint probability density function was modeled as respectively
3-D and 4-D Gaussian Mixture Models [1][2], and is here ex-
tended to color LFs.

Gaussian Mixture Models (GMM) offer elegant and rel-
ative easy descriptions for distributions and are frequently
used to approximate multi-modal, multivariate distributions
pXY (x, y). Given a GMM, one can derive a Gaussian Mix-
ture Regression (GMR) as follows [8]. Assume training data
D = {xi, yi}Ni=1 with joint probability density:

pXY (x, y) =

K∑
j=1

πjN (µj , Rj) (1)

and
∑K

j=1 πj = 1, µj =

[
µXj

µYj

]
, Rj =

[
RXjXj

RXjYj

RYjXj
RYjYj

]
The parameters of this model are Θ = [Θ1,Θ2, ...,ΘK ],

with Θj = (πj , µj , Rj), respectively being the population
densities (or priors), centers, and covariances.

The conditional pdf Y |X is given by [1]

pY (Y |X = x) =

K∑
j=1

wj(x)N (x;mj(x), σ2
j ) (2)

mj(x) = µYj
+RYjXj

R−1
XjXj

(x− µXj
) (3)

wj(x) =
πjN (x;µxj , RXjXj )∑K
i=1 πiN (x;µxi

, RXiXi
)

(4)

σ2
j = RYjYj

−RYjXj
R−1

XjXj
RXjYj

(5)

Note that Eq. 4 corresponds to the softmax function fre-
quently used in artificial neural networks and ensures the
global support of the model. We can define the regression of
the model to be equal to the expected value y given a sample
location x through the conditional. From Eq. 2 and 4 follows
the regression function m(x):

m(x) =

K∑
j=1

wj(x)mj(x) (6)

A signal at location x is estimated by the weighted sum
over all K mixture components (Eq. 6). Every mode in the
mixture model is treated as an expert and the experts collab-
orate towards the definition of the regression function. Note
that the reconstruction is smoothed piecewise linear [1].

2.2. Light field reconstruction

We adopt the proposed two-plane parametrization
L(x, y, s, t) from Levoy et al. [11]. However for con-
sistency with other SMoE papers, we will here use the
variables LF(a1, a2, x1, x2) = (Y,Cb, Cr), with a1, a2 be-
ing the directional dimensions, x1, x2 the spatial dimensions.
LF(a1, a2, x1, x2) will as such give the pixel amplitudes for
horizontal parallax at disparity a1, vertical disparity a2, row
x1, and column x2. This is the datastructure that is yielded by
the Light Field Toolbox v0.4 [12]. Consequently, our GMM
is 7-D, X being 4-D and Y being 3-D in Eq. 1.

Note that the soft-windows wj(x) (Eq. 4), describe a 4-
D volume per component in which the component acts as the
expert. The response of this expert mj(x) (Eq. 3) describes
for each color channel a hyperplane in the 4-D space. This is
visualized in Fig. 1. Fig. 1a shows the epipolar planes (EPI)
for the original LF. The red lines indicate where 4-D space is



(a) Original (b) 4-D GMM: epipolar
planes (EPI) visualization

(c) 3-D (a1, x1, x2) projec-
tion: frontal view

(d) 3-D (a1, x1, x2) projec-
tion: angled view

(e) Decision boundaries (f) Reconstruction

Fig. 1: I01 Bikes [4][9] crop modeling with a very low amount
of kernels for visualization (K=35).

“cut”. Fig. 1b shows a low order GMM fit onto the data, note
that our components are 4-D Gaussians. Fig. 1c and 1d visu-
alize the 3-D projection onto (a1, x1, x2). Fig. 1e show the
segmentation, which is nothing more than the hard-decision
of our soft-windows wj(x). It is clear that our windows soft-
partition the entire 4-D space, thus yielding global support.
Finally, the reconstruction based on Eq. 6 is illustrated in 1f.

Fig. 2b shows the reconstructed (7,7)-view from the I01
Bikes LF shown in Fig. 2a [4]. The modeling is detailed in
Sec. 3. Note how the speckle rust turns into smudges in the
reconstruction, which yields a visually pleasing quality decay.
This is however heavily penalized when objective metrics are
used. Note that, the reconstruction is a bit blurred due to the
relatively low number of components (K = 8960) compared
to 41.483.904 original pixels in the lenslet image. Thus result-
ing in 4.630 pixels for one component on average, i.e. each
4-D soft-window spans 4.630 samples on average.

Important to note is that our method is able to reconstruct
views that were not captured. Our model has a continuous
representation, as such any view in the domain can be read-
ily be reconstructed. Limited extrapolation is also possible.
Fig. 3a, shows that the LF datastructure (obtained through
the aforementioned LF Toolbox) results in black views in the

(a) Original view (b) Reconstruction

Fig. 2: I01 Bikes [4][9] light field example (K=8960), show-
ing a central view with (a1, a2) = (7, 7). Mean PSNRYCbCr:
30.71 dB, mean SSIMY: 0.86 (objective evaluation as in [4])
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(b) Reconstructed views

Fig. 3: View reconstruction (26x27 spatial crop from I02)

corner directional views. Our method is able to estimate these
views with remarkable consistency by excluding the black
views during training. The effect is clearly visible by the po-
sition of the red square on the background (Fig. 3b).

2.3. Depth estimation

The slopes of the lines in the EPI plane are related to the
depth of the corresponding points in the 3-D space [13]. For
each pixel, the slope in the EPI planes is determined by the
weighted sum of the spatio-directional covariances. This re-
sults in two depth estimations. For each component we de-
fined the horizontal αH as follows:

αH = atan2(eH) (7)

with eH being the largest eigenvector of the 2-D covariance
matrix of a1 and d1. Analogously for αV with the covariance
matrix of a2 and d2.

To obtain a continuous angle value for a pixel i, the same



(a) Depth from verti-
cal parallax

(b) Depth from hori-
zontal parallax

(c) Mean depth

(d) Depth map from
Lytro software [10]

(e) 2-D edge detec-
tion

(f) 4-D edge detection

Fig. 4: Depth estimation and edge detection through gradient
strength from model in Fig. 2

weighted sum can be used as for the regression:

αi,H =

K∑
j=1

wj(xi)α
j
H (8)

Results are shown in Fig. 2. It is clear that this simple
approach is able to perform an interesting depth estimation.
The estimation is noisy, but is continuous and detailed, com-
pared to the depth map in Fig. 4d provided by the Lytro soft-
ware [10]. Note the very narrow brake cable under the “Peu-
geot” beam. The vertical and horizontal block artifacts are
caused by a block-wise modeling approach, detailed in Sec-
tion 3 (blocksize=128).

2.4. 4-D edge detection and other descriptors

In [1], an image edge detection method was proposed based
on SMoE. Each component describes an edge which is de-
scribed by the norm of RYj ,Xj/RXjXj . The same can be
done for LF in 4-D. Consequently, not only are the spatial gra-
dients taken into account, but also the variation of the luma
along the directional dimensions. Fig. 4 shows an example
comparison of using only the spatial dimensions for edge de-
tection (x1 and x2), and the situation where the full covari-
ance is used (a1, a2, x1, and x2). 4-D edge detection results
in a much more detailed result as information is used from
multiple viewing angles.

Note that the other 2-D image features presented in [1],
are readily extensible to 4-D. These methods (4-D segmenta-
tion, flow, ...) are out of the scope of this work.

3. MODEL CODING

3.1. Introduction

Our coding strategy follows the same principle as the 2-D im-
age case [1], with some adjustments.In contrary to the work

of Verhack et al. [1], the priors πj are not estimated at de-
coder side. Instead, the models were trained by constraining
the priors to be 1/K. Furthermore, during these experiments
the chroma slope componentsRXj ,YCb,Cr,j are discarded, as the
human visual system is not very sensitive to those changes.
Note that both the modeling and the coefficient quantization
contribute to the approximation error.

3.2. Local Modeling

The Expectation-Maximization (EM) algorithm is used to es-
timate the parameters Φj = (πj , µj , Rj) for each component
j [14]. The modeling is performed on spatially restricted
overlapping blocks ranging over the full directional dimen-
sions. This is in contrast to the non-overlapping blocks in [1].
The overlap mitigates the abrupt changes around block-edges
previously visible, which are due to data truncation. Further-
more, in contrary to [1], all blocks in this work received the
same budget of components. As such, we limit the amount
of free parameters in this early work and the prior can be as-
sumed to be uniform.

3.3. Window RXjXj
quantization

In contrary to the work in [1], we employ a vector
quantization-like method for coding the window covariance
RXjXj . We propose an EM-like algorithm based on the
Kullback-Leibler (KL) divergence. As such, the probabil-
ity densities are compared, which are more informative than
the covariance parameters. We normalize all RXjXj

by
|RXjXj

|(1/d). In the case of RXjXj
for LFs, d equals 4. As

such, the constructed codebook contains normalized shapes
with determinants of one. The coding of the magnitude of the
shape, i.e. |RXjXj

|(1/d) is discussed in the next subsection.
The KL-divergence for multivariate Gaussians is given by

DKL(P ‖ Q) =
1

2

[
log

(
|RX1

|
|RX2 |

)
− d+ tr(R−1

X2
RX1)

]
+

1

2

[
(µX2 − µX1)TR−1

X2
(µX2 − µX1)

]
(9)

As our data is normalized, |RX1 | and |RX2 | are one. Further-
more, the windows are assumed to be centered on the origin,
i.e. µX1

and µX2
are zero. In order to obtain a symmetric

similarity measure, we define our distance as

d(RX1
, RX2

) =
DKL(RX1 ‖ RX2) + DKL(RX2 ‖ RX1)

2

=
1

4

(
−2d+ tr(R−1

X2
RX1

+ tr(R−1
X1
RX2

)
)

Covariances are clustered around a centroid using
d(RX1

, RX2
) and at each iteration the new centroid co-

variance Cl is calculated as the mean covariance of the
members of the cluster l and renormalized. The algorithm
is not proven to converge, but works well in practice. Fig. 5
illustrates the algorithm on a 2-D dataset.



Fig. 5: Codebook of size 64 (right) made from a set of 8960
2-D normalized covariances (left)

This codebook was trained at encoder side, and trans-
formed to ensure robustness. As each Cl is semi-positive def-
inite, Cl can be decomposed using Cholesky: Cl = ATA.
A is vectorized and each coefficient is coded analogously to
the slopesRXjYj (see following subsection). At decoder side,
the multiplication ATA ensures the reconstructed covariance
to be semi-positive definite again.

3.4. Center µ and slope RXjYj
quantization and arith-

metic coding

The centers µ = [µX , µY ] are difference coded by defining
a path that comprises every component in a greedy fashion.
Start with the component j closest to (0, 0). Find component
k, (k 6= j), so that |µj − µk| is minimal.

The 7-D differenced centers µj = [µ1
j , ..., µ

7
j ], the 4 di-

mensions in RXjYj and the shape magnitude |RXjXj |(1/d)
are assumed to be Laplacian distributed. These values are
concatenated in one 12-D vector s and are further normalized
as follows

s̃ij =
sij − E[si]

ciσsi
(10)

with ci ≥ 1 being the ratio determining how much more sub-
sampled the coefficient i needs to be compared to the location.
We set c3 = c4 = 1 as the baseline, i.e. ci with i 6∈ {3, 4} de-
termines how much less important coefficient i is compared
to the spatial location center (µ3

j , µ
4
j ). Hereby we assume that

the precision of the location always will be the highest com-
pared to the other coefficients. Consequently, the distribution
of the coefficient i with ci > 1 is squeezed together. Next,
quantization is performed uniformly based on the limits of s.
As such, we are able to combine different quantization steps
for each coefficient, while still using a single arithmetic coder.
The same Laplacian adaptive arithmetic coder is employed as
in [15].

4. CODING EXPERIMENTS

4.1. Experiment setup

In this work, our quantitative analysis is limited to the coding
performance and exact view reconstruction. We followed the

(a) JPEG on lenslet (0.14,
26.47, 0.70) [4]

(b) JPEG-2K view encod-
ing (0.05, 22.30, 0.66)

(c) SMoE (0.002, 22.97,
0.66)

(d) SMoE (0.01, 26.43,
0.80)

(e) SMoE (0.028, 27.75,
0.87)

(f) Original

Fig. 6: Visual comparison of one view (a1, a2) = (7, 7) at
different bitrates. Bitrates are calculated as the LF filesize in
bits divided by the number of pixels in the lenslet image as
in [4]. Except for (b): the filesize of the J2K coded file was
used, with the number of pixels of one view. Metrics are in
the format (bpp, PSNR (dB), SSIM).

same set up as the ICME 2016 Grand Challenge [4], with the
difference that SMoE operates directly on the 4-D LF stack,
and not on the lenslet image.

The parameters were found using random search due
to the large amount of parameters: blocksize, kernels per
block Ki, quantization steps, book size, ... The quanti-
zation step ranged [7, 8, 10, 12], ratios ci = [1, 2, 8, 16],
book sizes= [26, 28, 29], blocksize= [32, 64], and Ki =
[8, 16, 32, 64, 96, 128]. To lower the computational demand,
and due to the extreme redundancy in a single LF, we trained
our models on a quasi-random subset of 25% of the samples
using the Sobol sequence.
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Fig. 7: Rate-distortion curves for I01,I02, and I10 [4].

4.2. Coding performance

Fig. 7 shows the rate-distortion (RD) curves on a log scale
for three LFs: I01,I02, and I10, optimized to PSNR. Note
that the bitrates evaluated in [4] only start at 0.1 bpp, whereas
our range starts at 0.001 bpp. We did not have access to the
decoded images in [4], so here we can only compare the ob-
jective metrics. Note that due to the approximative nature of
our method, near-lossless quality is hard to obtain because of
the intrinsic filtering and small geometrical distortions. Es-
pecially due to the fact that we only train on a percentage of
the original amplitudes. As such, the proponents in [4] yield
higher PSNR (> 32dB for all three images) at 0.1 bpp, than
SMoE at our highest RD-point.

A visual comparison with the JPEG-baseline at 0.14 bpp
is provided in Fig. 6 [4]. Reconstruction from lenslets are
very sensitive towards artifacts in the fine details of the lenslet
image. As such, the JPEG lenslet coding yields sharp but
corrupted views as in Fig. 6a. Fig. 6b shows JPEG-2000 on
a single view (instead of coding the lenslet image). This also
provides no bitrates as low as ours. SMoE coded views are
shown for low, mid and higher quality, at very low bitrates. It
is clear that even at lower quality, the artifacts introduced by
SMoE are less outspoken than for JPEG lenslet coding.

5. CONCLUSIONS

The SMoE approach for LF representation and coding intro-
duced in this paper drastically departs from traditional tech-
niques. Long-range spatial and angular correlations are ex-
plored in a unified Bayesian approach. Large 4-D volumes of
pixel data are harvested by optimizing component locations
and steering parameters. The resulting kernels are edge-aware
and steer along spatial and angular directions. The kernels act
as experts and all collaborate towards the reconstruction of
the LF images.

A steered kernel network provides sophisticated disparity,
depth, and edge clues. Since the approach derives a closed-
form spatio-angular continuous regression equation for pixel
amplitudes, intermediate views as well as extrapolated views
are readily available at any spatial and angular resolution,
scale and location. Results presented for compression of LFs
indicate that the SMoE approach can be highly competitive at
low rates.
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