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Abstract—We propose a novel lossy block-based image com-
pression approach. Our approach builds on non-linear autoen-
coders that can, when properly trained, explore non-linear statis-
tical dependencies in the image blocks for redundancy reduction.
In contrast the DCT employed in JPEG is inherently restricted to
exploration of linear dependencies using a second-order statistics
framework. The coder is based on pre-trained class-specific
Restricted Boltzmann Machines (RBM). These machines are
statistical variants of neural network autoencoders that directly
map pixel values in image blocks into coded bits. Decoders
can be implemented with low computational complexity in a
codebook design. Experimental results show that our RBM-codec
outperforms JPEG at high compression rates, both in terms of
PSNR, SSIM and subjective results.

Index Terms—Restricted Boltzmann Machines, Autoencoder,
Image Compression

I. INTRODUCTION

Our challenge is the development of image compression
approaches that combine excellent efficiency with very low
encoder and decoder complexity. Low complexity decoders
are demanded i.e. in browser implementations and in mobile
devices, sensor networks or drones. Here the speed of en-
/decoding and/or the power consumption is of prime concern.

The most widely employed lossy compression algorithm
for still images is the JPEG image coding standard [19][21]
and maintains reasonable compression efficiency. The com-
putational complexity of the decoder is dominated by the
DCT implementation. In general, image coders based on
codebooks, such as vector quantization approaches [2][9][14],
can provide very low complexity at the decoder. An index
is transmitted to the decoder and pixels stored in a decoder
codebook are directly used for reconstructing pixels in blocks.
No further signal processing operations are required. In sparse
coding approaches [3] signals are often reconstructed using a
superposition of codebook entries. Recent machine learning
methods and approaches led to significant improvements in
image compression [4][5][20].

In this paper we provide first results for an image com-
pression approach based on Restricted Boltzmann Machines.
RBMs are stochastic variants of neural network autoencoders
which became very popular stochastic feature learning models
in recent years. RBMs are frequently applied in fields of clas-
sification [16], feature learning [6] and collaborative filtering
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[18]. In addition, they are applied in autoencoder architectures
to reduce the dimensionality of data [13]. These non-linear
autoencoders can, when properly trained, explore non-linear
redundancies in the image blocks for redundancy reduction.
In contrast the DCT employed in JPEG is inherently restricted
to exploration of linear redundancies using a second-order
statistics framework. Compared to ”classical” neural networks
RBMs can generate the statistical distribution of the input
data and present important deep learning building blocks. An
important aspect for our interest in RBMs is their fast training
capability. For training the Contrastive Divergence algorithm
proposed by Hinton [10] allows to derive highly efficient
RBMs with much fewer training data compared to classical
neural networks [12][17]. To our knowledge RBMs have as
of today not been used for image compression.
Our approach to image compression follows the block-based
technique of JPEG. However, the DCT in the encoder and de-
coder is replaced by a set of class-specific RBM autoencoders.
RBM decoders can be implemented in a codebook design to
trade off signal processing operations with codebook memory
for fast decoding. The pre-categorization classifies each block
in a specific RBM class according to its main edge direction.
The mean value of a block is quantized and DPCM coded
as with JPEG. The remaining texture details in the difference
blocks are compressed choosing different binary hidden layer
sizes of the RBMs.

II. RESTRICTED BOLTZMANN MACHINES

A Restricted Boltzmann Machine is a stochastic variant
of a general Boltzmann Machine with the restriction that an
RBM has only connections between a stochastic hidden and
a stochastic visible layer. This constraint makes training of
the network parameters more feasible but does not impose
too many restrictions on the capability of the network for
efficient coding. Our proposed codec uses indiviually trained
Gaussian-Bernoulli RBMs (GB-RBM) to map the real-valued
pixels of an image patch into binary codewords. A GB-RBM
has V real-valued visible units and H binary hidden units
[13]. An example for a GB-RBM with a visible layer size
V = 64, respectively for an 8x8 input block, and a hidden
layer size H = 2 is shown in Fig. 1a. The GB-RBM assigns
a probability, governed by an energy function [22], to each
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Fig. 1: (a) An example of the class-specific RBM for coding the difference block Dk. (b) A learnt codebook can replace the
decoder part.
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The energy function represents the joint configuration of the

stochastic visible and hidden units, where vi is the i-th state
of the visible state vector v and hj is the j-th state of the
hidden state vector h. The real-valued weight between visible
unit i and hidden unit j is represented by wij . The real-valued
bias into hidden unit j is given by bhj and the real-valued bias
into visible unit i is given by bvi . The Gaussian visible units
vi are controlled by the standard deviation σi. Weight matrix
and biases of the RBM need to be ”trained” based on a set of
training data from real images.

A. RBM encoder, decoder and learning

We employ the Contrastive Divergence learning algorithm
[10][11][15] for learning. In the following we discuss briefly
the main training steps for the optimization of the weight
matrix. The updates for the biases can be derived in a similar
way. Given a set of training data from real images, the real-
valued pixels of an 8x8 training patch are assigned to visible
units. To obtain the binary hidden state vector h for a given
training input v = vc, a conditional probability for each hidden
unit is computed in Eq. 2. For each block in the training set the
computed conditional probability is equivalent to the logistic
function.

P (hj = 1|vc) = 1

1 + e
−(

∑V
i=1

vc
i
σi
wij+bhj )

(2)

To get the binary state of each hidden layer, the following
case distinction is used:

hj =

{
0 if P (hj |v) < 0.5

1 if P (hj |v) ≥ 0.5.
(3)

The above Eq. 3 and Eq. 2 are the RBM encoder equations
and the derived binary hidden vectors represent the coded bits
for an 8x8 block. The decoder reconstruction of the visible
layer pixels in each 8x8 block is computed by using the coded
bits in the hidden layer:

vreci = σihjwji + bvi . (4)

The above forms a stochastic RBM autoencoder, the ”de-
coder” depicted in Fig. 1a. To update the parameters during
training, the probability for the activation of the hidden units
under the condition of the reconstructed training input vreci is
given by Eq. 5:

P (hj = 1|vrec) = 1

1 + e
−(

∑V
i=1

vrec
i
σi

wij+bhj )
. (5)

With learning rate αw and C the number of blocks in the
training set the final update rule for the weight matrix is:

∆wij =
αw

σi

C∑
c=1

[vci p (hj = 1|vc)− vreci p (hj = 1|vrec)] . (6)

III. SYSTEM ARCHITECTURE

The architecture of the proposed RBM-codec is depicted in
Fig. 2. A MxN gray-scaled image is divided in K 8x8 blocks.
The mean is removed from each block and coded separately as
with JPEG. Since we employ a stochastic framework removal
of mean is mandatory [11].

After normalization the value range of D lies between
[−1, 1]. We employ the Histogram of Oriented Gradients
(HOG) algorithm [7] to classify the 8x8 difference blocks Dk

of I according to distinctive edge orientation. 8, 16 or 32
classes are used depending on the chosen configuration. For
encoding of each Dk each class uses one class-specific trained
GB-RBM.

A. Encoding

The components of Dk are encoded using class-specific GB-
RBMs. For our block sizes of 8x8 the visible layer size is fixed
to V = 64 units. Adaptive number of bits per blocks can be
generated by the coder to account for varying complexity of
coded textures - by choosing different hidden layer sizes with
H = [2, 4, 6, 8, 12, 16]. A GB-RBM with H hidden units has
2H binary states, which represent possible codewords. Those
binary codewords are obtained by computing the conditional
probability, as denoted in Eq. 2. The standard deviation σi
is derived from the training data step and fixed for coding.
To get the final binary state of a hidden layer Eq. 3 is used.
Notice that from 2H states only H states are linear independent
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Fig. 2: Architecture of the proposed new RBM-codec (setup3 32RBMs).

TABLE I: General Setup Configurations

configuration setup1 8RBMs setup2 16RBMs setup3 32RBMs
signal bits S = 3 S = 4 S = 5

number of RBM
classes

(het/hom)
8 (7/1) 16 (14/2) 32 (28/4)

possible hidden
layer sizes

[2,4,6,8,12,16]
Hhom =H

[2,4,6,8,12,16]
Hhom = H

[6,8,12,16]
Hhom = 6

thresholdhom thom = 0.001 thom = 0.001 thom = 0.001

thresholding
parameters – the = 3 · 10−3

tho = 5 · 10−4

the 1 = 0.033
the 2 = 0.013
the 3 = 0.005
tho 1 = 5 ·10−4

tho 2 = 2 ·10−4

tho 3 = 5 ·10−5

base images. To take this into account the proposed codec was
designed in three configurations. In a first step of encoding,
the blocks Dk are divided into seven classes according to their
main edge direction using HOG algorithm. The homogeneous
blocks are assigned to the 8th class by a variance threshold
thom. All eight classes form the base model (setup1 8RBMs)
for two other configurations. For the second configuration
(setup2 16RBMs) two additional variance thresholds were
used to divide the existing eight classes into further sub-
classes. As a result, the codec has in setup2 16RBMs 16
GB-RBMs, which are separately trained. To achieve higher
quality the third configuration (setup3 32RBMs) with 32 GB-
RBMs is implemented using six additional thresholds. In the
first and second configuration all class-specific GB-RBMs
have the same number of hidden units (H). In the third
configuration the four homogeneous classes were constrained
to a hidden layer size of Hhom = 6. The possible sizes
of each configuration and the used classifying thresholds
are depicted in Table I. The thresholding parameters were
derived from experimentation. To achieve a better bit saving
each RBM codeword is be finally Huffman encoded. The
stored/transmitted bits of each block include the signal-bits
S to indicate the used GB-RBM, the bits of the Huffman
codeword rDk , which represents the difference block, and the
bits of the mean image rMk

. The resulting bits per pixel for
an image accounts to :

rRBM-Codec =

∑K
k=1(

S
64 + rDk + rMk

)

K
[bpp]. (7)

B. Decoding

The decoder reconstructs the mean blocks Mk and the dif-
ference blocks Dk separately. The implemented DC-decoder
delivers the reconstructions of DC values of blocks Ik, as
shown in Fig. 2. The signal-bits S indicate which GB-
RBM and its corresponding Huffman dictionary was used for
encoding of Dk. The selected Huffman dictionary returns the
respective binary hidden layer state of the GB-RBM. The Eq.
4 is used to obtain the reconstructed block Drec

k = vrec. To
receive the final reconstructed image Irec, the mean image M
is added to the reconstruction of Drec.

C. Complexity of the decoder

Our desired property of the proposed RBM-codec is the
extremely fast decoding of Drec. An RBM with hidden layer
size H can generate 2H −H output 8x8 image blocks, which
are linear combinations of only H base images. I.e. for H = 2
there exist two base images for the binary states [1 0] and [0
1] and state [1 1] is their sum:

vrec = σ[1 1]w′ = σ ([0 1] + [1 0])w′, (8)

where w′ is (2x64). The decoding can be implemented in
different ways. Each encoded 8x8 block can be reconstructed
using Eq. 4, where the binary state vector h is multiplied with
the trained weight matrix (our biases are all zeros). The re-
construction can also be implemented using a codebook design
as illustrated in Fig. 1b. The decoded Huffman codewords are
then codebook indices. 8x8 blocks are reconstructed by the
patches vrec stored in the codebooks without any arithmetical
operation (except the mean needs to be added). Alternatively
reconstruction can also be done as in Eq. 8 where only the base
images are store in a smaller codebook and for reconstruction
of the pixels the base images are superimposed according to
the bit pattern. No multiplications are required as with the
JPEG inverse DCT.

IV. EXPERIMENTS AND RESULTS

All three presented RBM-codec configurations were trained
separately and for each single GB-RBM a class-specific
training set was used. The complete dataset for our training
contained 2.6 million randomly chosen 8x8 samples from the
ImageNet dataset [8]. Each configuration was trained with the
same training set. The class-specific training samples were



permuted after each epoch. The used learning rates α and other
parameters for the training of each RBM are shown in Table
II. The weight matrix was randomly initialized to small values,
the biases for the visible and hidden units were set to zero,
based on the recommendations of Hinton [11]. We observed
that learning the visible biases resulted in lower visual quality,
therefore we set the learning rate αbv to zero. Optimization is
done using Contrastive Divergence [10]. The proposed RBM-
codec was implemented in MATLAB.

All three RBM-codec configurations were tested with gray-
scaled standard images from the Miscellaneous dataset [1].
Based on the implemented configurations, the proposed RBM-
codec is currently limited to lower bpp ratios. The results of
our experiments on images with low resolutions are depicted in
Table III. This allows comparison between the lowest possible
quality level of JPEG and the RBM-codec at a similar bit rate.
Also same comparison at the highest possible quality level of
the RBM-codec is shown. For all six test images the RBM-
codec outperforms JPEG drastically at lowest possible JPEG
bpp values. For test image Lena crop at the lowest quality
of JPEG, the RBM-codec achieves a gain of 1.55dB (with
10% less bits). A visual performance comparison between
JPEG and the RBM-codec is shown in Fig. 3. It is evident
that images are reconstructed with drastically better quality
and more texture details compared to JPEG. This observation
can be verified also for higher bit rates of the RBM-codec in
Fig. 3c. Also in homogeneous regions a much more visually
pleasing result is obtained, resulting in less blocking artifacts
and improved texture details. This can be explained inspecting
the distribution of the classes for coding this image. 14%, 18%,
6%, 4%, 3%, 4%, 8% and 44% were assigned to the classes 1-
8. Class 8 caters for the background with homogenous texture.
Class 1 contains vertical and classes 2 and 3 mainly diagonal
structures. PSNR and SSIM values of these images are easily
cross-referenced with Table III. Not surprisingly, at these low
rate SSIM is by far the better quality measure compared to
PSNR.

The rate-distortion curves for Lena crop are shown in Fig.
4. This result is typical for the performance of the RBM-codec
and illustrates that our performance is somewhere between
JPEG and JPEG2000. Based on SSIM measure a bit reduction
of up to 50% is achieved.

TABLE II: Training Parameters

Parameter Value Parameter Value
αw 0.00002 batchsize 20
αbh 0.0001 epochs 1000
αbv 0.0 σ 0.1

V. CONCLUSION AND FUTURE WORK

Our novel RBM-codec for image compression outperforms
the standard JPEG compression scheme at low bit rates sig-
nificantly. In addition the design at the decoder admits a very
low complex ”fast” and ”power efficient” implementation. The
approach builds on a set of stochastic autoencoders that can,
when properly trained, explore non-linear dependencies in the

(a) original (b) RBM: 0.1534 bpp (c) RBM: 0.2504 bpp

(d) JPEG: 0.1693 bpp (e) JPEG: 0.2489 bpp (f) JPEG: 0.2684 bpp

(g) original (h) RBM: 0.1512 bpp (i) RBM: 0.3075 bpp

(j) JPEG: 0.1599 bpp (k) JPEG: 0.3052 bpp (l) JPEG: 0.3395 bpp

Fig. 3: Visual comparison between the RBM-codec (b-c), (h-i)
and JPEG (d-f), (j-l) for original test image Lena crop (a) and
an image detail of Stream and Bridge (g).
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Fig. 4: Rate-distortion curves for test image Lena crop.

image blocks for redundancy reduction. In contrast the DCT
employed in JPEG is inherently restricted to exploration of
linear redundancies using a second-order statistics framework.
We believe that the combination of pre-classification and non-
linear mapping is a promising research direction.

The presented codec is currently limited to low numbers of
bits per block. We plan in our future work to extend the RBM-
codec to higher qualities using more RBMs and to exploit their
dependencies in a more efficient way using more advanced



training and using more levels of pre-processing. It is also
possible to stack RBMs into a deep RBM network to envision
deep learning coding strategies.
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TABLE III: Bit Rates and Quality Measures for Small Resolution

test name Aerial (256x256) Clock (256x256)
quality JPEG low medium RBM high JPEG low medium RBM high
codec JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM

bit rate [bpp] 0.2162 0.1963 0.2449 0.2444 0.3462 0.3155 0.1801 0.1774 0.2078 0.1948 0.2249 0.2221
PSNR [dB] 19.755 20.532 20.383 21.240 22.324 22.370 23.556 24.665 25.265 25.824 26.101 26.436

SSIM 0.4999 0.5687 0.5500 0.6262 0.6713 0.6947 0.7613 0.8216 0.7958 0.8376 0.8152 0.8552

test name Elaine (256x256) Lena crop (256x256)
quality JPEG low medium RBM high JPEG low medium RBM high
codec JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM

bit rate [bpp] 0.1720 0.1595 0.2295 0.2285 0.2731 0.2538 0.1693 0.1534 0.2033 0.2015 0.2684 0.2504
PSNR [dB] 23.429 25.061 26.503 27.580 28.121 28.165 23.080 24.638 25.015 26.159 27.275 27.379

SSIM 0.5965 0.7016 0.7144 0.7912 0.7710 0.8038 0.5680 0.6433 0.6522 0.7184 0.7319 0.7597

test name Couple (256x256) Peppers (256x256)
quality JPEG low medium RBM high JPEG low medium RBM high
codec JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM

bit rate [bpp] 0.1758 0.1603 0.2196 0.2186 0.2810 0.2772 0.1847 0.1739 0.1975 0.1909 0.2470 0.2482
PSNR [dB] 22.035 23.002 23.575 24.321 25.073 25.426 22.857 24.483 23.518 25.044 26.019 26.806

SSIM 0.5112 0.5847 0.6029 0.6795 0.6844 0.7362 0.6333 0.7399 0.6609 0.7572 0.7416 0.8097

TABLE IV: Bit Rates and Quality Measures for Higher Resolution

test name Boat (512x512) Man (1024x1024)
quality JPEG low medium RBM high JPEG low medium RBM high
codec JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM

bit rate [bpp] 0.1491 0.1382 0.2091 0.2035 0.2510 0.2607 0.1238 0.1330 0.1912 0.1937 0.2482 0.2476
PSNR [dB] 23.438 23.447 26.254 25.567 27.317 26.711 23.819 24.254 27.081 26.198 28.661 27.731

SSIM 0.5717 0.5992 0.6847 0.6950 0.7268 0.7395 0.5296 0.5946 0.6757 0.6978 0.7345 0.7440

test name Mandrill (512x512) Stream and Bridge (512x512)
quality JPEG low medium RBM high JPEG low medium RBM high
codec JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM JPEG RBM

bit rate [bpp] 0.1531 0.1477 0.2557 0.2594 0.3004 0.3134 0.1599 0.1512 0.2689 0.2626 0.3052 0.3075
PSNR [dB] 19.921 20.292 21.518 21.411 22.045 23.042 21.466 21.354 23.622 23.448 24.086 23.904

SSIM 0.3815 0.4147 0.5403 0.5749 0.5828 0.6084 0.4512 0.4749 0.6122 0.6250 0.6439 0.6582


