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ABSTRACT

The Steered Mixture-of-Experts (SMoE) framework targets
a sparse space-continuous representation for images, videos,
and light fields enabling processing tasks such as approxima-
tion, denoising, and coding. The underlying stochastic pro-
cesses are represented by a Gaussian Mixture Model, tradi-
tionally trained by the Expectation-Maximization (EM) algo-
rithm. We instead propose to use the MSE of the regressed
imagery for a Gradient Descent optimization as primary train-
ing objective. Further, we extend this approach with regular-
ization terms to enforce desirable properties like the sparsity
of the model or noise robustness of the training process. Ex-
perimental evaluations show that our approach outperforms
the state-of-the-art consistently by 1.5 dB to 6.1 dB PSNR for
image representation.

Index Terms— Sparse Image Representation, Gaussian
Mixture Model, Steered Mixtures of Experts, Denoising

1. INTRODUCTION

In recent years, machine learning based image and video rep-
resentation techniques have received a lot of attention as they
are able to learn structures and properties of such multimedia
signals in a highly adaptive way. However, most of the re-
search has been focused on artificial neural network based so-
lutions [1–3], commonly trained using Gradient Descent. We
explore how the same training techniques known from deep
learning can be applied to the novel and well-defined Steered
Mixture-of-Experts (SMoE) framework introduced in [4]. For
such image coding applications SMoE yields compact sparse
representations, allowing very efficient compression e.g. as
only the parameters of a Gaussian Mixture Model (GMM)
need to be stored. This unifying vision incorporates higher di-
mensional image modalities. In [5] and [6] the SMoE frame-
work has been extended to video and light field representation
and coding, respectively.
Unfortunately, learning models for higher qualities still poses
a challenging task to be tackled. This is twofold reasoned.
With increasing number of components the number of local
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(a) Original (b) SMoE 34.63 dB (c) JPEG 34.68 dB

Fig. 1: Image quality comparison between regressed SMoE
model trained by the proposed method and JPEG at the same
PSNR level.

minima increases. As such, the initialization of the parame-
ters of the GMM (or SMoE in more general terms) becomes
a crucial part [7]. GMMs are typically trained by the well-
known Expectation Maximization (EM) algorithm which op-
timizes towards the maximum likelihood function [8] rather
than minimizing the Mean Squared Error (MSE) of the re-
gressed imagery. As a consequence, the maximum potential
of such a model does not get fully exploited.
In [4], the joint likelihood of location and amplitude of pixels
of the underlying image gets maximized. Deriving the condi-
tional pdf such as in [9] called Gaussian Mixture Regression
(GMR) the amplitude of a pixel given the location of that pixel
can be regressed which leads to the alternative model of the
Mixture-of-Experts (MoE) approach [10]. MoE approaches
follow the divide-and-conquer principle. Each expert acts as
a regression function weighted by a gating function. This ar-
rives at soft partitioning of the input space to determine in
which regions the experts are trustworthy. To avoid the prob-
lem of initialization of such a GMM in [7] a novel hierar-
chical Split-EM for yielding a sparse SMoE model has been
presented which starts the modeling with few components.

This paper contributes to a framework which is able to
optimize the underlying parameters towards minimizing the
MSE using Gradient Descent (GD) [11]. In contrast to [7],
the optimization starts with a very high number of compo-
nents initialized on a evenly distributed grid. We introduce
additional objectives to the loss function to establish a trade-
off between the number of parameters and the regression er-



ror, promoting a sparsification of the model. Noise robustness
is achieved by maximizing the bandwidth of the components.

The potential of SMoE can be seen in Fig. 1 which de-
picts reconstructed images of a crop of Lena at the same
PSNR level using SMoE and JPEG, respectively. While
JPEG (see Fig. 1c) suffers from several artifacts such as ring-
ing and block artifacts, SMoE (see Fig. 1b) is visually more
appealing. Detailed structures are preserved while noise cor-
ruption is reduced which induces the loss in PSNR compared
to the original (see Fig. 1a).

2. STEERED MIXTURES OF EXPERTS

Gaussian Mixture Models are used to define a multivariate
joint density distribution for (spatial input) random vector
x and (luminance output) random variable y as sum of K
weighted Gaussian distributions (kernels)

p (x, y) =

K∑
i=1

πi · N (x, y;µi,Σi) (1)

with mixing coefficients πi, for which
∑
∀i
πi = 1, covariance

matrices and mean values (centers)

Σi =

[
ΣXX,i ΣXY,i

ΣT
XY,i σ2

Y,i

]
, µi =

[
µX,i

µY,i

]
. (2)

When the model parameters are trained (i.e. by EM) a 2D
regression function yp (x) can be determined using the ex-
pected value of the conditional distribution of Y givenX

yp (x) = E [Y |X] =

K∑
i=1

mi (x) · wi (x) (3)

with the so called (hyper-) plane components or simply ex-
perts

mi (x) = µY,i + ΣT
XY,iΣ

−1
XX,i

(
x− µX,i

)
(4)

and weighted soft max gating functions, called gates

wi (x) =
πi · N

(
x, y;ΣXX,i,µX,i

)
K∑
j=1

πj · N
(
x, y;ΣXX,j ,µX,j

) . (5)

2.1. GMM Adaptations for Gradient Descent
A closer look on equation (4) and (5) reveals the indepen-
dence of experts and gates. Although ΣXX,i and µX,i are
part of both, the expert and gate definition, the necessary de-
grees of freedom to decouple each expert from its correspond-
ing gate are introduced by µY,i and ΣT

XY,i. Hence, each ex-
pert can be rewritten as

mi (x) = m0,i +m1,i · x1,i +m2,i · x2,i (6)

with m0,i = µY,i −ΣT
XY,i, [m1,i m2,i] = ΣT

XY,iΣ
−1
XX,i and

[x1 x2]
T

= x. Thus, experts and gates can be trained inde-
pendently if needed.

To enforce positive semidefiniteness of each covariance
matrix ΣXX,i and omit matrix inversion induced instabili-
ties in the training process, we redefine each Σ−1XX,i by its
Cholesky decomposition:

Σ−1XX,i := A ·AT (7)

A :=

(
a1,i 0
a3,i a2,i

)
(8)

and optimize for a1,i, a2,i and a3,i instead.

2.2. Multi-Task Optimization
The most commonly used training method for GMMs and
MoEs in general is the EM algorithm. Unfortunately EM op-
timizes the likelihood of a mixture model to a given data set
(X, Y ). For regression purposes, it might be rather practi-
cal to optimize an underlying model by MSE directly. Thus,
instead of taking the likelihood as quality metric, the MSE
between image data yn and parametric regression yp(xn) can
form a more reasonable optimization criterion:

LMSE :=
1

N

N∑
n=1

(yn − yp (xn))
2 . (9)

With an additional sparsity promoting regularization loss:

LS := λS ·
K∑
i=1

πi (10)

the mixing coefficients πi are gradually decreased until val-
ues ≤ 0 are reached, stating that the respective kernel has no
influence to the regression function and thus can be removed
from the model. Analogously, the bandwidth of each kernel
can be maximized by:

LD := λD ·
K∑
i=1

1

|ΣXX,i|
= λD

K∑
i=1

(a1,i · a2,i)2 . (11)

suppressing the modeling of too small details as usually in-
troduced by noise. The final multi-task loss is composed as:

L := LMSE + LS + LD (12)

incorporating all above stated objectives. The influence of the
sparsity and denosing losses LS,LD can be adjusted by the
respective coefficients λS and λD. The task then is to find a
set of parametersAi,mi, µi and πi that minimizes L:

arg min
µ,A,m,π

{L} . (13)

Following the negative gradient −∇L via Gradient Descent
is the most intuitive approach to such task.
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Fig. 2: Comparison of the image quality of regressed SMoE models learned using different training methods and initialization
strategies for various numbers of used kernels in the models. SMoE-EM and SMoE-Split-EM refer to [4] and [7] respectively.

3. EXPERIMENTS

In this section we evaluate the performance of the proposed
approach and compare the results to state-of-the-art methods.
The implementation was done using the Tensorflow frame-
work [12], the source-code is made publicly available1

In practice, the gradients of the variables to optimize are
of different magnitudes, requiring different learning rates to
leverage the potential of the SMoE framework. Training is
performed using Adam [13] with learning rates of 10, 10−5

for A,π respectively and 0.001 for µ,m if not stated other-
wise. The remaining parameters are set to the default values
of β1 = 0.9, β2 = 0.999, ε = 10−8 in all experiments.

3.1. Image Modeling
The process of modeling a training image is divided into three
steps: First the model is initialized and pre-trained without
any regularization. After the training is converged, the reg-
ularization to sparsify the model is employed. In the final
step, the model is fine-tuned to minimize the regression MSE
without regularization. Kernels are removed from the model
when their respective mixing coefficients reach πi ≤ 0 during
optimization in all stages.

Initialization & Pre-training The kernels of the model are
initialized with µ distributed evenly on a grid of k × k with
k = 128 over the 512 × 512 pixels wide test images. All
mixing coefficients are set to πi = 1

k2 . A is initialized in
a way that the distance between the centers of two kernels
equals two standard deviations 2σ. The experts are set to
m1,i = m2,i = 0 and m0,i to the mean of the pixels of the
training image where the gating of the respective kernel has
the maximum influence. This results in k2 = 16384 kernels
which are trained for 10.000 iterations. No regularization is
applied in this stage, so λS = λD = 0. However, some
πi reach values ≤ 0 removing the respective kernel from the
model. Evaluation results after this stage are listed in the first
line for each test image in Tab. 1.

1https://github.com/bochinski/tf-smoe

Regularization After pre-training, the regularization phase
is employed. Best results are achieved by slowly introduc-
ing the regularization term and exponentially increasing the
coefficient λS . Therefore, the following schedule is applied:
λS = x2

k2 with x evenly distributed in [0.1,15] with 50 steps.
After each step, the model is trained for an additional 1000 it-
erations. The fixed number of initial kernels k2 is included to
account for different sensitivity levels depending on the ini-
tialization of the kernels.

Fine-tuning In the last step, the model is trained for an
additional 200 training iterations without any regulariza-
tion to compensate for the prior trade-off between the MSE
loss LMSE and the regularization loss LS to fine-tune the
model towards a minimal MSE. Vanilla Gradient Descent
with learning rates of 0.1, 10−8 for A,π respectively and
10−6 for µ,m is used.

Results Fig. 2 and Tab. 1 show the achieved regression
results for four common test images with different numbers
of kernels in the model. Both reference methods are opti-
mized using the EM algorithm instead of GD. SMoE-EM [4]
initializes the model based on the richness of the textures
in the image. SMoE-Split-EM [7] extends this approach by
dynamically adding new kernels in areas which need higher
attention. SMoE-GD Grid shows the results of our method
without using any regularization and follows the described
pre-training for various numbers of k. SMoE-GD Proposed
refers to the above described setting. Apparently, GD opti-
mization significantly outperforms EM based optimization in
terms of PSNR and SSIM [14]. This may be reasoned by min-
imizing the regression MSE instead of maximizing the joint
likelihood of location and amplitude of the pixels. Secondly,
the proposed regularization scheme significantly outperforms
the grid based optimization with the exception of the Peppers
test image. This is most probably due to the fact that there
are no areas that require special attention with more kernels,
making an equal distribution of the kernels over the image
sufficient. The fine-tuning stage consistently increases the
regression quality of up to 0.7dB PSNR as shown in Tab. 1.



Table 1: Quality examples in terms of PSNR in dB and SSIM
depending on the number of kernels per model. PSNR values
for SMoE-GD Proposed are divided in results after regular-
ization / fine-tuning phase.

Image SMoE-GD Proposed SMoE-GD Grid GMM-Split-EM [7]
Kernel PSNR SSIM Kernel PSNR SSIM Kernel PSNR SSIM

Camera- - - - 13378 45.91 0.99 - - -
man 3844 39.31 / 40.07 0.96 3845 36.69 0.96 3947 33.92 0.91

1928 35.68 / 36.02 0.93 1933 33.67 0.93 1931 31.07 0.87
880 32.72 / 32.81 0.88 880 30.93 0.88 878 28.29 0.83

Lena - - - 13056 39.85 0.96 - - -
3876 36.92 / 37.17 0.93 3876 35.04 0.92 4003 33.95 0.89
1934 35.06 / 35.27 0.9 1934 33.13 0.9 1921 31.05 0.85
893 32.29 / 32.54 0.87 893 31.02 0.86 854 28.48 0.79

Peppers - - - 11899 36.36 0.91 - - -
3868 33.86 / 33.96 0.84 3873 34.24 0.87 3805 32.47 0.81
1971 33.14 / 33.41 0.83 1971 33.27 0.84 1988 31.08 0.79
896 31.84 / 31.94 0.81 896 31.98 0.82 919 28.76 0.75

Baboon - - - 11576 35.25 0.98 - - -
3537 27.82 / 27.96 0.8 3539 26.97 0.84 3532 24.76 0.63
1907 25.34 / 25.46 0.69 1907 24.92 0.72 1869 23.35 0.52
889 23.42 / 23.46 0.56 889 23.34 0.58 766 21.90 0.41

A visual comparison of the resulting models is shown in
Fig. 3. For the grid initialization and no regularization, the
spatial distribution of the kernel centers remain equal as seen
in Fig. 3a. A concentration of kernels in the more highly
textured area of the feather can be noticed for SMoE-Split-
EM [7] in Fig. 3b. Our proposed SMoE-GD method (Fig. 3c)
with regularization however shows the most desirable result
by modeling the background of the image with only a few
kernels while distributing the remaining kernels in the tex-
tured foreground.

3.2. Noise Robustness
Being robust against noise corruption is a crucial part in im-
age modeling. Thus, we evaluate our SMoE training approach
on a crop of Peppers corrupted by Additive White Gaussian
Noise (AWGN) with a standard deviation of σ = 10 which is
depicted in Fig. 4b and 4c showing the best results for λD = 0
and λD = 2 · 10−8 respectively, each with k = 64. In gen-
eral, SMoE-GD is notably influenced by the noise corruption
while the result in Fig. 4c benefits from the bandwidth regu-
larization term. For comparison, results of the state-of-the-art
denoising method BM3D [15] for AWGN with known σ are
shown in Fig. 4d.

4. SUMMARY AND CONCLUSIONS

We proposed a novel, Gradient Descent based optimization
strategy for the SMoE framework. This includes regulariza-
tion to enforce desirable properties like the sparsity of the
model or noise reduction characteristics of the regressed im-
agery. The experimental evaluation for the learning of sparse
representation of images shows a significant improvement
over the state-of-the-art methods with quality gains of up
to 6.1 dB PSNR for the same number of model parameters.
This is achieved by replacing the EM algorithm with Gra-
dient Descent, optimizing the regression error directly. The

(a) SMoE-GD Grid
31.02dB/0.86

(b) SMoE-Split-EM
28.67dB/0.80

(c) SMoE-GD Pro-
posed 32.48dB/0.87

Fig. 3: Visualization and comparison of the kernel distribu-
tion with K = 900 for GD optimization with a grid initial-
ization, the proposed method and EM optimization with split-
ting [7]. Each color in the top row codes the area of maximum
influence of a respective kernel. The evaluation metrics are
PSNR and SSIM. (Best viewed in color and zoomed-in)

(a) Noisy Peppers
28.06 dB / 0.70

(b) SMoE-GD Baseline
31.38 dB / 0.84

(c) SMoE-GD Proposed
32.26 dB / 0.90

(d) BM3D [15]
34.27 dB / 0.93

Fig. 4: Visualization of the SMoE noise reduction capabilities
and comparison to the state-of-the-art (PSNR and SSIM). Fig-
ures (b) and (c) show the regressed SMoE model without and
with bandwith regularization. The state-of-the-art denoising
method BM3D [15] is included for reference (d).

regularization towards sparse models makes the method inde-
pendent of sophisticated initialization techniques of previous
approaches. Future research will include the exploration of
how this promising performance gain can be leveraged for
coding image data.
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