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Figure 1: Colour mismatch correction and detection based on the spherical Voronoi diagram.

Abstract

Stereoscopic omnidirectional images (ODI) when viewed with a head-mounted display are a way to gen-
erate an immersive experience. Unfortunately, their creation is not an easy process, and different problems
can be present in the ODI that can reduce the quality of experience. A common problem is colour mismatch,
which occurs when the colours of the objects in the scene are different between the two stereoscopic views.
In this paper we propose a novel method for the correction of colour mismatch based on the subdivision
of ODIs into patches, where local colour correction transformations are fitted and then globally combined.
The results presented in the paper show that the proposed method is able to reduce the colour mismatch in
stereoscopic ODIs.
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1 Introduction

One of the most popular formats to deliver virtual reality experiences is 360-video which is often referred to
as VR-video or cinematic VR. Shooting 360-video is a technological challenge as there are many technical
limitations which need to be overcome, especially for capturing and post-processing in stereoscopic 3D (S3D).
360-video is often captured with an omnidirectional multi-camera rig and stitched together in post-production
[Zhang and Liu, 2015]. In general, the limitations inherent in 360 videos result in artifacts which cause visual
discomfort when watching the content with a head-mounted display. The artifacts or issues can be divided
into three categories: binocular rivalry issues (e.g. colour mismatch), conflicts of depth cues (e.g. vergence-
accomodation conflicts), and artifacts which occur in both monocular and stereoscopic 360-degree content
production (e.g. stitching artifacts) [Knorr et al., 2017].

In this paper, we focus on binocular rivalry issues, in particular on colour mismatch detection and correction
in S3D omnidirectional content as illustrated in Figure 1. Colour mismatch in multi-camera systems is an
inherent problem due to different camera and lens characteristics, different illumination and reflections resulting
from different camera orientations, etc. Such colour mismatches occur during the stitching and blending process



Figure 2: Overall system for colour mismatch correction and detection.

of multiple views into a single monocular panorama, but also between the left and right view of a stereoscopic
panorama, which often result in visual discomfort [Knorr et al., 2012].

In this context, we introduce a novel approach and entire system for colour mismatch correction and detec-
tion in S3D omnidirectional content. The system consists of three main modules: pre-processing, local colour
correction between the left and right stereoscopic ODIs, and colour mismatch detection as shown in Figure 2.
During the pre-processing step, we compute a spherical Voronoi diagram and extract Voronoi patches in the
equirectangular projection (ERP) format of the left and right ODI. Then, we estimate pixel correspondences
between the corresponding patches in both views and apply a local colour transfer in order to match the colours
of the corresponding patches, which is the main contribution of this paper. Finally, our patch-based colour
mismatch detection module [Croci et al., 2017] measures and visualises colour mismatch, which might still be
present, between the left and right stereoscopic ODIs. While the entire colour correction approach is applied in
the RGB colour space and uses a colour transfer approach introduced in [Grogan and Dahyot, 2017], the colour
mismatch detection module is applied in the Lab colour space and uses colour statistics analysis proposed in
[Reinhard et al., 2001]. This allows a more objective and independent evaluation of still existing colour discrep-
ancies between the views. Finally, we evaluate the entire system on 15 S3D ODIs with large colour mismatch
and show that our system improves the quality of the ODIs significantly.

The remainder of the paper is organised as follows. In Section 2, related work in artifact detection and
colour correction is reviewed. Then, in Section 3, we describe the proposed system for the subdivision of the
ODI into patches, the colour correction step, and the colour mismatch detection. In Section 4, the proposed
colour correction method is evaluated with 15 S3D ODIs. Finally, in Section 5, the paper concludes with a
discussion and future work.

2 Related Work

Colour mismatch detection and colour correction in stereoscopic and multi-view applications has been an ongo-
ing research topic for many years. In [Dong et al., 2013], a method for detecting stereo camera distortions based
on statistical models was presented in order to evaluate vertical misalignment, camera rotation, unsynchronised
zooming, and colour mismatch in S3D content.

A large variety of artifact detection methods, including a method for the detection of colour mismatch, was
introduced in [Voronov et al., 2013]. More recently, in [Knorr et al., 2017, Croci et al., 2017], S3D quality
assessment methods for stereoscopic ODIs were introduced which also focus on colour mismatch detection.

In the computer vision and multi-view video processing communities, the initial efforts on solving colour
mismatches between multiple views used exposure compensation (or gain compensation) [Xu and Mulligan,
2010]. This approach adjusts the gain level of images to compensate for appearance differences caused by
different exposure levels. However, this approach may fail in the case of local differences e.g. caused by lens
flares or polarization.

[Wang et al., 2011] proposed a robust algorithm to correct the colour discrepancy between images, which
neither requires a colour calibration chart/object, nor explicitly compensates for the image as a whole. Instead,
they correct the image region by region using local feature correspondences. In [Zheng et al., 2017], a method
is proposed that combines global and local colour information to correct colour discrepancies between stereo-
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Figure 3: Spherical Voronoi diagram and disparity compensation.

scopic image pairs. The algorithm uses dense stereo matching and global colour correction to initialise colour
values, and then improves the local colour smoothness and global colour consistency of the resulting image.

For large baseline multi-view video, [Ye et al., 2017] introduced a robust colour correction method that en-
forces spatio-temporal colour consistencies and gradient preservation by solving a global optimization problem.
The authors of [Xia et al., 2017] proposed an effective colour correction method for multi-view image stitching
which first finds coherent content regions in inter-image overlaps, and then parameterise a colour remapping
curve as transform model.

The image processing and computer graphics communities were developing similar colour manipulation
methods, called colour transfer techniques. These methods transfer the colour feel from a palette image to
a target image, and assume that the content of the images is different. The earliest work in this area was by
[Reinhard et al., 2001], who proposed transforming the mean and standard deviation of each colour channel
in the target image to match that of the palette image. Since then, more complex techniques have been used
to model the colour distributions of the images more accurately, including histograms and Gaussian Mixture
models [Pitie et al., 2005, Tai et al., 2005]. While global colour transfer functions are often used, including
affine, radial basis and optimal transport functions [Pitié and Kokaram, 2007, Grogan et al., 2017, Bonneel
et al., 2016], local techniques have also been proposed to allow for more flexibility in the recolouring [Wang
et al., 2010, Shih et al., 2013]. Recently, Grogan and Dahyot [Grogan and Dahyot, 2017, Grogan et al., 2015]
proposed a colour transfer technique that could also be enhanced to take into account colour correspondences
between the target and palette images, ensuring the method could be used to colour correct images of the same
scene. They showed that this method performed as well as other state of the art colour corrections techniques,
with the advantage of being more robust to correspondence outliers. In this paper, we extend this method so
that it can be used to successfully colour correct stereoscopic ODIs.

3 Proposed Method

The complete system for the correction and detection of colour mismatch is illustrated in Figure 2. Its three main
components, that is, the pre-processing step, the local colour correction, and the colour mismatch detection are
described in the next sections.

3.1 Pre-processing Step

The first step is the subdivision of the ODI into approximately equally sized patches based on the approach
described in [Croci et al., 2017]. This ensures both a local colour correction of image patches and a localisation
of colour mismatches in the detection module. First, a spherical Voronoi diagram [Aurenhammer, 1991] is
computed from n evenly distributed points on the sphere as illustrated in Figure 3a. The evenly distributed
points P
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) is the spherical distance between the current point P and the point P
i

, i.e., the length of the
shortest path on the surface of the sphere connecting these two points.

Next, we map each cell V C

i

of the spherical Voronoi diagram to a planar image patch ¶
i

. For each cell, a
planar patch is positioned on the centroid of the cell, tangent to the sphere. The points on the sphere and the
planar patch are related by central projection, and the pixel values of the patch are computed by sampling the
ODI in ERP format using bilinear interpolation. The resolution of each patch is defined by the pixels per visual
angle, a parameter that is kept constant for each patch. In the presence of disparity, it can occur that a region
inside a Voronoi cell in one view is outside the same cell in the other view. In order to cope with the disparity,
we add a border around the Voronoi cell when the patch is extracted, as shown in Figure 3b.

The number of patches and thus the size of each patch influences the reduction of the colour mismatch. If
the colour mismatch is localised in a small region and the patch is large, then the proposed method could have
difficulty in matching the colours between the two views. We have empirically found that 30 patches is a good
number for most of the ODIs that we have processed.

3.2 Local Colour Correction

The local colour correction component of the system involves first estimating colour correspondences
{c
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}
k=1..m between corresponding patches of the left and right view. We investigated two methods for

the estimation of correspondences: the Semi-Global Block Matching approach [Hirschmuller, 2008] and the
Coarse-to-Fine PatchMatch approach [Hu et al., 2016], but we found no significant difference between the
colour correction results generated using these approaches.

For each patch, we use the correspondences to estimate a colour transformation which recolours the patch
of the right view so that it is more similar to the left, using the method proposed in [Grogan and Dahyot,
2017]. For each patch, we fit two Gaussian Mixture models GM M
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to the left and right colour
correspondences respectively:

GM M

Y

(x) = 1
m

mX

k=1
N (x; c

(k)
Y

, hI), with Y 2 {L,R}, (2)

where x 2R3 are colour values of the RGB colour space, and each Gaussian N is associated with an identical
isotropic covariance matrix, hI. The goal is to align the two Gaussian Mixture models by warping the right one
as follows:
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where ¡ represents a parametric Thin Plate Spline (TPS) transformation controlled by the parameter µ. Tech-
nically, the alignment beteween GM M

L

and the warped GM M

0
R

is obtained by minimising the L2 distance
between them. This L2 technique has been shown to be robust to correspondence outliers, and the smooth TPS
function ensures that similar colours in the patch remain similar after recolouring, eliminating artifacts in the
gradient of the image which can appear when using other recolouring methods [Pitie et al., 2005].

Once the transformations ¡
i

have been estimated for each patch ¶
i

, they have to be combined to recolour
the entire ODI of the right view. To ensure that there are no harsh colour changes between patches in the re-
coloured ODI, we use weight masks to blend the transformations. For each transformation ¡

i

, a corresponding
weight mask G

i

is computed. The masks G

i

are in ERP format and their pixel values are used to weight the



contributions of each of the transformations when recolouring the ODI. To compute the value of a pixel in the
weight mask G

i

, the spherical distance between this pixel in the spherical ODI and the centroid of the Voronoi
cell V C

i

is computed, and a Gaussian function is applied to it. In this way, in G

i

, pixels that lie close to the
centroid in the ODI will have higher weights than those further away. Then, when recolouring the ODI of the
right view I

R

in ERP format to its corrected version Î
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, the colour of the pixel at location ( j ,k) is given by:
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In this manner, each local colour transformation has the most influence in the area from which it is estimated,
and the colour transformations are smoothly blended without creating any artifacts at the patch borders.

3.3 Colour Mismatch Detection

The colour mismatch detection applied after the colour correction of the ODI, and useful for getting feedback
on the remaining colour mismatch, is a simplification of the colour mismatch detection proposed in [Croci et al.,
2017]. The simplification is obtained by discarding the saliency, since it is not available for all the 15 ODIs
processed in this paper. As mentioned in Section 3.1, the detection module also uses Voronoi patches for colour
mismatch detection and localization. First, the ODI is partitioned into patches. Then, correspondences are
computed for corresponding patches between the two views using the Semi-Global Block Matching approach
introduced in [Hirschmuller, 2008]. The correspondences are necessary in order to identify the regions that are
present in both views of the patch. From the common regions, the colour means µ
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and µ
R

, and the colour
standard deviations æ

L

and æ
R

are estimated in the Lab colour space as proposed in [Reinhard et al., 2001].
Finally, for each patch ¶

i

the following colour mismatch score is computed:
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where ∏ is a tuning parameter that was set to one for the analysis of the ODIs. The patch scores can be visualised
with the jet colourmap and overlaid with the ODI in ERP format as shown in the teaser in Figure 1. In order to
get the global score C MS

g l obal

for the entire ODI, the patch scores are simply averaged:
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4 Results

In order to evaluate the proposed method, we selected 14 ODIs with the highest colour mismatch scores from
the dataset introduced in [Croci et al., 2018], and one ODI which was captured with a 360± mirror-rig. Figure 4a
shows a bar chart with the global colour mismatch scores computed with Equation 6 before and after applying
the proposed colour correction method. In this figure, one can see that the novel approach is able to reduce the
colour mismatch in all ODIs by an average of 74%. The largest score reduction, equal to 89%, was observed
for ODI 1.

Figure 4b shows for four ODIs the individual colour mismatch patch scores and their visualisation using
the jet colourmap before and after colour correction, together with some close-ups. ODI 1 is a clear example
of strong colour mismatch where our method is able to significantly reduce it, as can be clearly seen in the
close-up. ODI 2 and ODI 3 also show a strong colour mismatch localised to a particular region. Even in these
two cases, our method fixes the mismatch. For ODI 4, the close-up shows how even minor colour mismatches
can be corrected.

Apart from the good results, we also observed some limitations of the proposed method. Since the method
is based on pixel correspondences between corresponding patches in both views, colour mismatch correction
and detection are dependent on the pixel correspondence accuracy. Another limitation occurs when the patch is
too large compared to the region with colour mismatch, or when the patch contains regions with different types
of colour mismatch. In this case the colour mismatch is reduced only partially.



(a) Global colour mismatch scores before and after colour correction (used camera rigs are specified in brackets).

(b) Sample ODIs with colour mismatch visualisation (red: strong mismatch, blue: no mismatch) and close-ups before and
after colour correction.

Figure 4: Results.



5 Conclusions

This paper presented a solution to the problem of colour mismatch in stereoscopic ODIs, which can cause visual
discomfort. The proposed approach first divides the ODI into patches using the spherical Voronoi diagram from
evenly distributed points on the sphere. In each patch a colour transformation is fitted from correspondences in
the RGB colour space, and then the colour transformations are combined together using weight masks based on
the spherical distance from the centroid of the Voronoi cells. In order to analyse colour mismatch objectively
and independently, the processed ODI is analysed in the Lab colour space using an alternative correspondence
estimation approach.

The results show that the proposed approach is able to reduce the colour mismatch significantly. This
conclusion was obtained by computing the global and local patch colour mismatch scores before and after ap-
plying the colour correction approach on different ODIs. In particular, 89% is the largest global score reduction
that was observed. However, the proposed method is not exempt from limitations related to the accuracy of
the correspondence estimation, and the misalignment of the patches with the region characterized by colour
mismatch.

In the future, we plan to improve the proposed approach by tackling some of the limitations, especially the
misalignment of the patch with the region affected by colour mismatch. The plan is to investigate the possibility
to have adaptable patches to the region with colour mismatch.
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