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Abstract. Ecological studies of some of the most numerous organisms
on the planet, zooplankton, have been limited by manual analysis for
more than 100 years. With the development of high-throughput video
systems, we argue that this critical bottle-neck can now be solved if
paired with deep neural networks (DNN). To leverage their performance,
large amounts of training samples are required that until now have been
dependent on manually created labels. To minimize the effort of expen-
sive human experts, we employ recent active learning approaches to se-
lect only the most informative samples for labelling. Thus training a
CNN using a nearly unlimited amount of images while limiting the hu-
man labelling effort becomes possible by means of active learning. We
show in several experiments that in practice, only a few thousand labels
are required to train a CNN and achieve an accuracy-level comparable to
manual routine analysis of zooplankton samples. Once trained, this CNN
can be used to analyse any amount of image data, presenting the zoo-
plankton community the opportunity to address key research questions
on transformative scales, many orders of magnitude, in both time and
space, basically only limited by video through-put and compute capacity.

Keywords: Classification · Zooplankton · Active Learning · automatic
identification and sizing · Cost-Effective Active Learning · in situ

1 Introduction

The aquatic planktonic microorganisms are the basis of life in the largest part of
our planet, the oceans and lakes, and thus of vital importance also for humanity
by providing food, oxygen, as well as many other ecosystems services. How-
ever, the increasing pressure of humanity on the same ecosystems has created
an urgent need to understand how these systems function and respond to the
changing environment [2, 21]. To better understand this, it is critical to be able
to measure fundamentals such as - who is where when and does what to whom.
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For plankton this has been an enormous challenge due to a strong missmatch
between available time-consuming manual analytic methods, and the need for
high numbers of samples to cover the wide range of scales in time and space
that the zooplankton operate in [6]. However, here we show that with effectively
trained deep learning approaches to lab and in-situ image systems, this have a
great promise to ease these key limitations.

In order to yield high quality data at high temporal and spatial scales, ade-
quate tools for data acquisition as well as analysis are required. For the imagery,
several camera-based systems have been developed in the recent past [1, 8] to
gather considerable amounts of data in an automated way [15, 5]. Analysing
these amounts of data by traditional methods, including manual annotation, are
unfeasible. This raises the need for reliable automated labelling tools [14]. Oth-
erwise it would not be possible to effectively explore this new scale of available
imagery.

Recent advances in the computer vision domain, accelerated by the redis-
covery of convolutional neural networks (CNNs) and deep learning methods in
general [11], have greatly improved the possibilities for reliable automated la-
belling tools. One of the major challenges that prevents the direct application
of such tools for successful plankton classification, is the general need for large,
manually labelled training data. Since zooplankton appears in very many species,
forms and stages, large training sets for each environment and image acquisition
system would be needed. Furthermore, it is hard to decide which samples need
to be manually annotated for the successful training of a CNN. This becomes
even harder as there are commonly great class imbalances in plankton data [22,
12, 4], while CNN training generally benefits from balanced training data. It
seems therefore natural to approach the problems of training data annotation
and classification of large datasets in a joint way. This process is known as active
learning [18]. It aims at training a classifier on a small initial training set and
then selects the most informative samples from a larger unlabelled dataset to
query them for labelling to e.g. a human expert for further training. Iteratively
performed, this can greatly reduce the number of needed annotations till conver-
gence. Furthermore, samples that were classified with high-confidence can also
be included in the training set with a pseudo-label equally to the predicted class.
This can further accelerate the training process and therefore reduce the need
for manually created annotations.

The additional use of high-confidence samples in the training of CNNs for
image classification in an active learning manner was first introduced in [23] as
Cost-Effective Active Learning (CEAL). This approach was adapted later for
face identification [13], melanoma segmentation [7] and cancerous tissue recog-
nition [20]. The authors of [4] proposed using a CNN to classify microscopic
grayscale images of plankton. Several different network architectures were ex-
plored and superior results over traditional approaches reported. A Generative
Adversarial Network is used in [22] to generate additional training samples to
handle the class imbalance often found in plankton datasets caused by the un-
even distribution of plankton presence in nature. The same problem is tackled
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in [12] using CNNs and transfer learning. [9] analyzes different methods for seg-
menting the plankton from the background and its impact on the classification
accuracy.

The contribution of this paper is manifold: We propose a novel CNN-based
classification system that is robust against the background noise in images and
therefore does not require any instance segmentation for background removal.
To our knowledge, we are the first to report the successful application of Cost-
Effective Active Learning to the task of zooplankton classification. Our experi-
ments show that the proposed system is able to solve the classification problem
with accuracy levels comparable to manual routine analysis of zooplankton sam-
ples, after just a few active learning iterations. We further apply the method to
a second dataset captured with a different camera in a different lake environ-
ment with the presence of a new prominent phytoplankton distractor class. The
previously trained system is able to successfully classify this new data. With
just one additional active learning update the same performance level as of the
original dataset is reached, showing the validity of the system. As the numbers
of organisms counted and sized increases with orders of magnitudes this has sev-
eral critical advances: 1) numbers of rare organisms, typically larger sized than
the numerous smaller organisms, can now be better estimated. 2) the estimate
of total biomass and size distributions will now be much more accurate due to
much higher and more accurate automatic size estimates, 3) the statistical power
will increase due to higher numbers, 4) the high throughput enables sampling
and in situ analyses on a much higher spatio-temporal scale, offering completely
new options for future (zoo)plankton studies like real-time in situ profiles.

2 Method

2.1 Active Learning

Given a dataset D, the aim of active learning for training a classifier’s parameters
W is to minimize the number of required annotated training samples DL ⊆ D
from a larger, initially unlabeled dataset DU ⊆ D while still obtaining satisfac-
tory training results. This becomes possible due to the assumption that not all
samples are equally informative for training and can be exploited by an iterative
process of training the classifier using already annotated samples DL and then
classifying all samples of the unlabeled set DU with it. Samples with the low-
est classification confidence are considered the most informative for the future
training step. Therefore, the top K least confident predictions are queried to
e.g. a human annotator for labeling and moved to DL. This is repeated until
a termination criteria is fulfilled, e.g. the training loss is converged or a certain
accuracy of the classifier is reached.

To measure the confidence of a predicted sample, several confidence criteria
were proposed in literature. We considered the 3 most common criteria in our
approach:

Least confidence [18]: x∗LC = max
j

(P (yi = j|xi;W)) (1)
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with P (yi = j|xi;W) denoting the probability of xi belonging to the j-th class
which translates to the most probable softmax classification score for the j-th
category. The lower this value the higher the uncertainty.

Margin sampling [17]: x∗MS = P (yi = j1|xi;W)− P (yi = j2|xi;W) (2)

The margin between the best (P (yi = j1|xi;W)) and second best (P (yi =
j2|xi;W)) classification score is used as confidence value. Lower values repre-
sent a higher grade of uncertainty.

Entropy [19]: x∗EN = −
∑
i

P (yi = j|xi;W) logP (yi = j|xi;W) (3)

The entropy criterion inspired by information theory takes all predicted class
labels into account and is accordingly defined by the entropy of the set of all
classification scores P (yi = j|xi;W). Higher values denote higher uncertainties.

2.2 Cost-Effective Active Learning

The plain active learning approach only takes advantage of the most informative
samples and their retrieved labels. For cost-effective active learning [23], the class
predictions of the high-confidence samples are used as pseudo-labels and added
temporarily to DL for the next training step of the classifier as they can still
contribute to the training process. In [23] it was proposed to use the entropy
criteria for the selection of the high-confidence samples. We consider all three as
possible criteria in our experiments for pseudo-labeling:

j∗ = arg max
j

(P (yi = j|xi;W)) (4)

yi =

{
j∗, x∗LC,MS > δ or x∗EN < δ

0, otherwise
(5)

with:

δ =

{
δ0, t = 0
δ + dr · t, t > 0

(6)

as a threshold for the selection of the high-confidence samples with δ0 as the start
value and dr as the decay rate. The decaying threshold allows for the selection of
more high-confidence samples at the beginning and enforces a higher confidence
of the samples towards the end of the active learning process.

2.3 Classifier

As classifier, a Convolutional Neural Network (CNN) as shown in Figure 1 is
employed. The architecture is based on the popular AlexNet [11] and was care-
fully adapted to fit the requirements of the used plankton image data. ReLU
activation is performed after each layer except for the last one which consists of
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Fig. 1: Employed CNN architecture

C softmax activated outputs where C denotes the number of possible classes. A
dropout of 50% was used while training the dense layers to prevent overfitting.
As loss function the cross-entropy is employed:

L(x, y,W) = −
C∑

c=1

1y=c logP (y = j|x;W) (7)

where 1y=c is 1 if y equals c or otherwise 0 and P (y = j|x;W) the softmax
output of the CNN for the jth class. The task is then to find a parameter set W
of the CNN satisfying the following minimization problem in each active learning
iteration T :

min
{W,n=|D|}

=
1

n

n∑
i=1

L(xi, yi,W) (8)

The non-optimal optimization can then be performed using ordinary gradient
descent methods.

3 Experiments

Several experiments were conducted in order to assess the effectiveness of cost-
effective active learning for training a CNN for zooplankton classification. Two
datasets from different biological environments were captured and analysed. The
first dataset is used to analyse the achievable accuracy of the CNN and how the
cost-effective active learning can be used to minimize the number of required
annotations. The second dataset is used to examine the generalization ability of
the CNN and if the CEAL method can be used to fine-tune the system to adapt
to the characteristics of this new data.

3.1 Datasets

All images used in the experiments were captured using the in situ imager de-
scribed in [3]. The first dataset ILES contains about 840K images. They were



6 E. Bochinski et al.

(a) Cladocera (b) Copepod (c) Rotifer (d) Junk (e) Distractors

Fig. 2: Example images of the ILES (top row) and CZECH (bottom row)
datasets. Different scales, rotations and background clutter pose challenges for
the classification system.

divided into 4 classes: cladocera, copepod, rotifer and junk whereas the latter
one comprises everything which can not be certainly assigned to one of the other
classes. The dataset is further split into two subsets A and B. Subset A com-
prises about 60K fully annotated images in order to evaluate the cost-effective
active learning framework with 80% of the data as training and the remaining
20% as testing data. Subset B contains the other 780K images and was used
to validate the approach and further investigation concerning suitability of the
results for analyses from the biological perspective. The second dataset CZECH
contains about 167K all unlabelled images. It was collected by the same imager
but equipped with a different camera and is used to further validate the ap-
proach using data captured in a different environment. The major challenge is
the prominent presence of a new phytoplankton distractor class shown in Fig-
ure 2e. A total of 10K/5K randomly selected images of ILES B/CZECH were
labelled for performance analysis.

3.2 Preprocessing

Only a two dimensional projection of the three dimensional object with an un-
known spacial orientation serves as input image for classifying the object. This
greatly differs to most of the well-researched computer vision applications as they
are focused to non-microscopic and non-aquatic images. To support the CNN to
deal with the induced rotation invariance, we use a pre-processing pipeline as
sketched in Figure 3. First, the approximate shape of the object is determined
by otsu thresholding [16]. The main axis is then calculated using principal com-
ponent analysis. The image is rotated in a way that the rotation of this axis is
strictly vertical. Finally, the center crop of the resulting image is used. Note that
the segmentation using otsu thresholding is only used for rotation but not for
cropping or removal of the background (as eg. in [9]) as we find that no current
segmentation approach is able to perform this task reliably enough to not remove
fine-grained details belonging to the planktonic object. Instead we rely on the
CNN to learn the differentiation between background and foreground features
during training. The ILES A training set consists of about 20K samples for each
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Fig. 3: Preprocessing pipeline for the images.

of the cladocera and junk classes, about 5K samples for copepod and only 1.3K
samples belonging to the rotifer class. To handle this imbalance during training,
the copepod images were mirrored horizontally and vertically, quadrupling the
amount of training samples to a total of 20K. Also 20K samples for rotifer were
created by mirroring and rotating to produce 15 samples per image including
the original. The rotations render the normalization regarding the orientation
useless, however there is no practical impact to the training since the rotifer
individuals have a distinct round shape (see Fig. 2c) which still causes that class
to be the most reliable during classification.

3.3 Training procedure

The first training evaluation was performed using the ILES A dataset. Since this
dataset is fully annotated, the active learning strategies can be simulated.

As initial labelled training set DL, 10% of the augmented training data was
used. Training is performed for 11 active learning iterations T with K = 2200.
An initial threshold δ0 = 0.995 and a decay rate of dr = 0.33 · 10−5 was cho-
sen for least confidence (LS) and margin sampling (MS) and δ0 = 0.4 · 10−4,
dr = −0.2 · 10−5 for entropy-based (EN) high-confidence sample selection. In
each iteration, the CNN was trained for 10 epochs with a batch size of 32 on
DL including the temporarily added high-confidence samples. Training was per-
formed using the adam algorithm [10] with a learning rate of 10−4. The remaining
parameters are set to the default values of β1 = 0.9, β2 = 0.999, ε = 10−8 in all
experiments.

3.4 Results

First, the maximum achievable CNN accuracy was determined by training on
dataset ILES A without employing any active learning strategy. Otherwise, the
training procedure previously described in 3.3 was followed. An accuracy of
83.84% was achieved and serves as baseline for the subsequent experiments us-
ing the active learning approaches. Figure 4a shows the development of the CNN
accuracy depending on the percentage of labelled training samples for the EN,
LC and MS cost-effective active learning strategies. It can be seen that there is
no significant difference in the performance of the different confidence metrics.
Margin sampling however was slightly better than the other two strategies and
was therefore selected for the subsequent experiments. In Figure 4b, a compari-
son between CEAL with margin sampling (MS), plain active learning (AL) and



8 E. Bochinski et al.

a random selection of samples queried for labelling is shown. In addition, ALL
denotes the baseline accuracy without any active learning. It can be observed
that CEAL performs favourably and is the only method reliably reaching the
peak accuracy of 83.84%. This is achieved while only requiring labels for one
third of the available training samples which translates to about 16K required
labels in total.
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(a) Different confidence metrics
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(b) Different selection methods

Fig. 4: Comparison of different sample selection methods and confidence metrics.

3.5 Generalization

In addition to the experiments on the fully labelled dataset, experiments under
real conditions were conducted. The final model from the previous experiments
trained on the dataset ILES A is evaluated on the ILES B and CZECH datasets.
Initially, a drop in the accuracy for the ILES B dataset is noticed. For the CZECH
dataset, a high accuracy of about 91% is achieved. The reason is the prominent
presence of a new phytoplankton class which is mostly classified correctly as junk,
which makes up about 88% of the whole test set. Following [15], the predictions
were also evaluated using the unweighted F1 score to get more meaningful results.
This reveals that the performance on the CZECH dataset is with an F1 score of
0.55 indeed considerably worse than on the ILES A set with 0.85.

To adopt the CNN classifier to the two new unlabelled datasets, a final cost-
effective active learning iteration was performed. In order to do so, 5.35% of the
ILES B and 3.37% of the CZECH dataset were labelled by a human expert.
The samples with the least margin sampling confidence were selected. Addition-
ally, the high-confidence samples using the same confidence metric were pseudo-
labelled as in the previous experiment. With these new samples, the CNN was
fine-tuned. The results are presented in Table 1.

The accuracy as well as the F1 score improved. In the case of the ILES B, the
performance compared to the initial ILES A was even slightly increased. For the
more challenging CZECH dataset, the accuracy was raised to 96% and the F1
score is with 0.80 only slightly behind the ILES datasets. Still, this result shows
that the approach is able to adapt not only to the different lake environment
of the CZECH dataset, but to a different camera setup with different visual
properties (see Fig. 2) as well. In Figure 5, confusion matrices for both datasets
are presented. It shows that the cladocera and rotifer classes are predicted most
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robustly while the performance for rotifer is slightly decreased for the CZECH
dataset. Most likely this is due to the visual similarity to the new phytoplankton
distractor only present in this dataset. Otherwise, the copepod and junk classes
are confused sometimes. The most probable reason for this is that there are
many copepod samples which are not focused properly, rendering the antennas
as most distinguishing visual feature invisible.

Dataset Accuracy F1

ILES A 83.84% 0.85
ILES B (no fine-tuning) 72.78% 0.75
ILES B (with fine-tuning) 86.23% 0.86
Czech (no fine-tuning) 90.87% 0.55
Czech (with fine-tuning) 96.08% 0.80

Table 1: Comparison of the
classification performance
for all datasets.

(a) ILES B (b) CZECH

Fig. 5: Confusion matrices for both valida-
tion datasets.

4 Conclusion

In this paper, we investigated the adaptability of the cost-effective active learn-
ing (CEAL) approach to train a Convolutional Neural Network (CNN) for the
task of zooplankton classification. Various experiments showed that CNNs are
indeed suitable for this task. With CEAL, just a fraction of the samples need to
be annotated by a human expert to reach the maximum possible accuracy of the
CNN. It was shown that the system is further capable of adapting to different
camera setups, lake environments and is even robust to a new, unseen distrac-
tor class. Hence, the proposed approach contributes to close the gap between
automated, large-scale image data acquisition systems and the actual interpre-
tation of the data from the biological application side by efficiently inferring
the required annotations automatically. This contribution reduces the effort of
training and using such systems significantly. When adapted in the ecological re-
search community together with the necessary optical equipment this will yield
possibilities to acquire key zooplankton data at an unprecedented magnitude in
both temporal and spatial scales, in its turn expected to create transformative
changes in plankton ecology in the near future.
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