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Abstract

The performance of optical flow algorithms greatly de-

pends on the specifics of the content and the application

for which it is used. Existing and well established optical

flow datasets are limited to rather particular contents from

which none is close to crowd behavior analysis; whereas

such applications heavily utilize optical flow. We introdu-

ce a new optical flow dataset exploiting the possibilities of

a recent video engine to generate sequences with ground-

truth optical flow for large crowds in different scenarios. We

break with the development of the last decade of introducing

ever increasing displacements to pose new difficulties. In-

stead we focus on real-world surveillance scenarios where

numerous small, partly independent, non rigidly moving ob-

jects observed over a long temporal range pose a challenge.

By evaluating different optical flow algorithms, we find that

results of established datasets can not be transferred to the-

se new challenges. In exhaustive experiments we are able

to provide new insight into optical flow for crowd analysis.

Finally, the results have been validated on the real-world

UCF crowd tracking benchmark while achieving competi-

tive results compared to more sophisticated state-of-the-art

crowd tracking approaches.

1. Introduction

Motion estimation based on the principle of optical flow

has given rise to a tremendous quantity of work and still

is one of the most active research domains in the field of

computer vision. The history of research on optical flow

shows that the accessibility of public benchmarks provided

the strongest impetus for significant innovation in the field.

From the first benchmark proposed by Barron et al. [4] in

1994 to more recent e.g. proposed by Butler et al. [6], the

community has benefited greatly from the possibility of a

measurable progress in which the limits of technology have

been pushed with new and more challenging datasets.

In visual surveillance, optical flow algorithms have be-

come an important component of crowded scene analysis

[18, 22]. The application of optical flow allows crowd mo-

tion dynamics of hundreds of individuals to be measured

without the need to detect and track them explicitly, which

is an unsolved problem for dense crowds. As a result, op-

tical flow based crowd-motion representations [25, 21] are

a core feature in variety of surveillance applications in e.g.

crowd segmentation [19], crowd behavior analysis [30] or

tracking in crowded scenes [1]. However, the impact of the

optical flow quality on the crowd analysis has not been suffi-

ciently investigated yet. In fact, the choice of an appropriate

optical flow method for crowd analysis is a challenging is-

sue because the quality of optical flow algorithms can only

be stated regarding the specific content and application that

is reflected by the recent datasets. For visual crowd analysis

none of the existing optical flow datasets (Middlebury [3],

KITTI 2012 [11] / 2015 [26] MPI-Sintel [6]) contains sui-

table content.

We argue that large crowds show major, non-investigated

challenges for optical flow algorithms; in particular, the re-

quirements in crowd analysis are: i) precise motion estima-

tion of numerous small, partly independent, self-occluding,

non rigidly moving individuals and ii) consistency over a

long temporal range. In this paper, we propose a new opti-

cal flow dataset for visual crowd analysis. The dataset com-

prises over 3200 frames in video sequences ranging up to

450 frames; each generated with one of the latest video en-

gines. The video engine allows to realistically synthesize

thousands of moving individuals simultaneously and acqui-

re ground-truth optical flow fields and person trajectories in

different environments simulating five typical crowd analy-

sis scenarios.

Each of the scenarios is rendered with a static and a dy-

namic camera setup to take modern applications for flying

video drones into account which allows for studying the im-

pact of the UAV ego-motion. We will compare the results of

state-of-the-art optical flow algorithms for the proposed da-

taset to their performance on a real-world crowd tracking

use-case to show the portability of the benchmark results to

real-world crowd surveillance applications.
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2. Related Work

Virtual simulation is a common approach in crowd ana-

lysis to study the behavior of complex crowd movements in

outdoor and indoor environments. Especially for high-level

events in dense crowds, such as tracing of people flows or

the detection of bottlenecks e.g. for infrastructural facility

management, virtual simulation has become an indispensa-

ble tool. Modular frameworks [27, 7] allow to design diver-

se virtual environments with hundreds of moving individu-

als and generate their exact positions and trajectories. Due

to constant improvements of rendering techniques, synthe-

tic video footage becomes increasingly realistic.

In contrast, creating comprehensive real-world datasets

is time consuming and expensive. For that reason, nowadays

crowd datasets label only a subset of the visible individuals

e.g. the UCF crowd tracking dataset [1], or contain only ve-

ry sparsely annotated crowds [29] or brief video-level based

annotations [10] describing the crowds rather than the indi-

viduals.

The difficulties to gather annotated real-world data and

the high quality of rendering pipelines make the idea of

using synthetic data in the field of video surveillance e.g.

to evaluate and/or train object-detection, object-tracking or

crowd behavior algorithms a promising approach. Qureshi

and Terzopoulos [28] proposed a virtual multi-camera sys-

tem within a train station to evaluate collaborative approa-

ches for tracking of pedestrians. It has been shown that de-

tectors trained by virtual data can be transferred and applied

to real-world applications. For example, Marı́n et al. [24]

and Hattori et al. [13] used synthetic data to train a pede-

strian detector without any real-data. In [5] Bochinski et al.

utilized the Source game engine to generate synthetic envi-

ronments with different vehicles, animals and individuals to

train a multi-class convolutional neural network for object

detection.

In the field of optical flow, the community has benefited

greatly from synthetic data, where it is commonly used for

benchmarking as it allows for creating challenging datasets

with sub-pixel accurate ground-truth. Unfortunately, none

of the existing datasets contain crowd analysis related con-

tent. The Middlebury dataset [3] published in 2007 contains

eight short training and eight test sequences from which half

of them has been synthetically rendered. The main chal-

lenge of this dataset is the precise estimation of manifold

motion-discontinuities from different large moving or sta-

tic objects. The estimated motions are rather small with an

average velocity of about 4 and an maximal velocity of 22

pixels. As the evaluation takes only one optical flow ground-

truth field for each sequence into account, it does not allow

to check temporal consistency of the motion estimates.

The MPI-Sintel dataset [6] proposed in 2012 is based

on the open source 3D animated short film called Sintel.

The training set consists of 1040 ground-truth optical flow

fields from 23 selected sequences. The test set contains 564

images spread over 12 sequences. The average and maxi-

mal velocities are 5 and 445 respectively. The dataset con-

tains a rich set of additional challenges such as long-range

motion, illumination changes, specular reflections, motion

blur and atmospheric effects. Taking a closer look reveals

that the results of a few extreme challenging sequences with

long-range camera or object motions, and strong distortions

(e.g. ambush 4) have a dominant impact on the final sco-

re. Hence, transferring these results to crowd analysis use-

cases, where motion of rather small objects is estimated,

could be difficult.

Flying Chairs [9] and ChairsSDHom [17] are abstract

synthetic datasets which are not designed for benchmar-

king but for training convolutional networks on optical flow.

Liu et al. [23] developed a semiautomatic tool and publis-

hed a small dataset, however as Butler et al. state in [6]

“[...] is not clear that humans are good at segmenting sce-

nes and may inconsistently label regions such as shadows.”

and “[...] ground truth flow will always be biased towards a

particular algorithm used to compute it.”, which makes the

use of this data problematic.

The KITTI 2012 [11] and 2015 [26] datasets are pure na-

turalistic benchmarks captured from a car driving through

the city of Karlsruhe. The main challenges of these datasets

are varying illuminations and long-range motion, i.e. avera-

ge and maximum velocities are 9 and 549 for KITTI 2012

and 8 and 724 pixels for KITTI 2015. Both datasets are spe-

cialized for automotive applications and the locomotion of

the car has a strong impact to the evaluation results.

Comparing the results of the four established datasets

Middlebury, KITTI 2012/2015 and MPI-Sintel, shows dif-

ferent rankings for the same optical flow methods; not at

least because each dataset focuses on a unique subset of is-

sues in the respective field. We therefore cannot find a clear

answer to the question What is a appropriate optical flow

method for crowd analysis? which raises the need for a de-

dicated benchmark for this use-case.

3. The Dataset

In this section we describe our new dataset called Crowd-

Flow1. It is aimed to provide an optical flow benchmark

with focus on crowd analysis applications. In that field, the

main purpose of optical flow methods is to estimate move-

ments of pedestrians, especially in highly crowded scenes.

A high precision of this motion estimation is an import-

ant prerequisite for subsequent algorithms, such as crowd

flow analysis, segmentation or tracking. To generate scenes

in a virtual urban environment, the Unreal Engine is used

which allows to simulate thousands of moving individuals.

The dataset consists of 10 sequences with lengths ranging

1available https://github.com/tsenst/CrowdFlow



Sequence Sample Description Optical flow field Person trajectories

IM01 (Static/Dynamic)

371 individuals

300 frames

Few pedestrians walking

against a main crowd flow.

IM02 (Static/Dynamic)

631 individuals

300 frames

Bottleneck dividing one

major flow into three.

IM03 (Static/Dynamic)

878 individuals

250 frames

Two dense flows walking

close past each other.

IM04 (Static/Dynamic)

344 individuals

300 frames

Spread of collective panic

and subsequent escape.

IM05 (Static/Dynamic)

1451 individuals

450 frames

Marathon sequence. Long

temporal tracking.

Abbildung 1. Overview of the proposed CrowdFlow dataset with excerpts of the rendered sequences and related ground-truth.

Dataset # Frames Rate Resolution Year

Middleburry 16 - 316 × 252 - 640 × 480 2007

MPI-Sintel 1628 24Hz 1024 × 436 2012

KITTI 2012 778 - 1242 × 375 2012

KITTI 2015 800 - 1242 × 375 2015

CrowdFlow 3200 25Hz 1280 × 720 2018

Tabelle 1. Statistics for existing optical flow benchmarks compa-

red to the proposed CrowdFlow.

between 300 and 450 frames. All sequences were rendered

with a frame rate of 25Hz and a HD resolution, which is ty-

pical for current commercial CCTV surveillance systems. A

comparison to existing optical flow datasets is shown in Tab.

1. Besides the increased resolution and number of frames, a

major difference to the established datasets is the organiza-

tion in continuous sequences instead of single frame-pairs

(only known from MPI-Sintel), allowing the evaluation of

temporal consistencies e.g. in form of trajectories.

An overview of the sequences, including visualizations

of the optical-flow and trajectory ground-truth, is shown in

Fig 1. The main design criteria for the dataset are:

Platform: Each of the 5 unique sequences is rendered

twice for different use-case scenarios: one with a static point

of view (classic surveillance) and one with a dynamic, air-

borne point of view (drone/ UAV based surveillance). This

allows to study the impact of a moving camera. Further,

sudden camera movements (< 50cm) and angular devia-

tions (< 3
◦) distort the otherwise smooth camera motion to

simulate the typical wind influence on UAVs.

Crowd Density: None of the recent optical flow bench-

marks covers a large amount of differently moving objects.

The CrowdFlow sequences contain between 371 and 1451

independently moving individuals. This allows for the influ-

ence between different movements when the crowd is dense

or the people occlude each other to be examined.

Crowd Movements: The scenes cover different kinds of

crowd movement: structured behavior with either a single

crowd or two crowds passing each other in different direc-

tions as well as fully unstructured movements of the indivi-

duals.

Temporal Consistency: Maintaining consistent flow

fields over a long temporal range is a new challenge in the

proposed dataset which is not covered by recent optical flow

benchmarks yet. It allows for analyzing optical flow fields

as time-depended vector fields, thus being able to measure

related errors such as drifting.

Portability: Being able to transfer the benchmark results

to real-world use-cases is a main criteria for synthetic data-

sets. In our experiments, we therefore evaluate and compa-

re the performances of several state-of-the-art optical flow

methods with respect to the crowd tracking accuracy on the

proposed synthetic and the real-world UCF crowd tracking

datasets [1]. To create similar conditions we designed the
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Abbildung 2. Statistics of the ground-truth optical flow fields (a-b)

and ground-truth trajectories (c).

sequences IM01 and IM05 resembling the respective se-

quences Seq1 and Seq5 of the UCF crowd tracking dataset.

Two types of ground-truth data are provided: optical flow

fields and trajectories. Examples can be found in Fig. 1.

Optical Flow: The optical flow ground-truth is divided

into two categories: foreground and background. For the fo-

reground, the dense flow for all pixels associated with the

pedestrians is provided. In addition, the background motion

is supplied on a sparse grid-like structure as it may also be

of interest e.g. for global motion estimation applications.

Trajectories: To provide a deeper insight into the tempo-

ral consistency of the optical flow fields, the ground-truth

contains dense and sparse trajectories for each individual.

The dense trajectories cover almost all visible pixels of the

individuals until they get occluded by other persons, objects

or body-parts. This trajectory set allows to study the tem-

poral consistency of the estimated motions per individual

over several frames. The person trajectories are located at

the head, similar to [16], thus allowing comparable evalua-

tions for tracking in crowds.

The statistics of both ground-truth data is given in Fig. 2.

4. Evaluation Metrics

To assess the quality of the optical flow we propose to

use two types of metrics: i) common optical flow metrics,

i.e. average endpoint error (EPE) and percentage of erro-

neous pixel (RX) and ii) long-term motion metrics based on

trajectories. Additionally, the run-time is a critical measure

to assess the usability for real-time applications.

Optical Flow Metrics: For each sequence, the EPE [6]

and R2 [11] values will be reported . While the EPE maps

over the total error range, the R2 indicates the percentage

of pixels with an end-point error larger than two. With R2,

we set a tolerance error threshold to half of the average bo-

dy size which is four pixels in our data set. To bundle the

sequence results for the whole dataset the average of the

sequence EPE and R2 are computed.

Long-term Motion Metrics: To evaluate the optical flow

fields, trajectories are seeded at the starting points of the

dense or person ground-truth trajectories and advected by

these. While the propagated trajectory points are in the sub-

pixel domain and the motion vectors are defined on the dis-

crete pixel grid, we found a bilinear interpolation to be suf-

ficiently accurate to reconstruct the corresponding motion

vector. The trajectory approach allows for a time-depending

evaluation of the optical flow fields. We follow the tracking

accuracy proposed in [16] for quantitative evaluations. This

metric measures accumulative motion errors and disrupti-

ons from temporal inconsistencies of the flow fields. The

tracking accuracy reports the percentage of tracked points

from all trajectories that lie within a certain distance to the

corresponding ground-truth points. As in [8] we will use an

error threshold of 15 for the qualitative comparison.

5. Experimental Results

We evaluated six state-of-the-art optical flow algorithms:

RIC [14], CPM [15] and FlowFields [2] which are highly

accurate approaches and currently ranked in the uppermost

quarter of the MPI-Sintel benchmark, DeepFlow [31], and

DIS [20] and RLOF [12] which are the top run-time effi-

cient approaches. Each implementation is online available

and supplies a set of baseline configurations. In our experi-

ments, we only report results of those configurations which

achieved the best performance for dense trajectories of the

proposed dataset. For DIS and RLOF we report two confi-

gurations: DIS2 (parameter setup 2, see [20]) and RLOF10

(grid size 10, see [12]) with run time optimized parameters,

and DIS4 and RLOF6 with precision optimized parameters.

Table 2 shows the comparative results for EPE, R2 and

the run-time. In summary, each approach tends to achieve

accurate results, except for DIS2 and with an EPE above 1.5

pixel. Overall, the most precise method is DIS4. It is worth

to note that the highly accurate approaches are no more pre-

cise than the fast processing ones when estimating crowd

movement. In the presence of additional camera motion the

precision of each approach deteriorates significantly. Even

for static scenes the background contains motion estimation

errors, whereby the majority is caused by too homogeneous

textures of the streets. Here, the background motion is bia-

sed by neighboring crowd motion vectors and smoothing

effects of regularization terms or interpolation errors in ca-

se of CPM, RIC and FlowFields.

Table 3 shows the results with respect to the tracking ac-

curacy. While the flow fields accuracy for this dataset is on

a frame-based level (EPE and R2) already quite high, the

accuracy of the time-depended perspective of the tracking

accuracy poses a significant challenge for the existing me-

thods. None of the evaluated methods achieved an accura-

cy above 70% for the dense trajectories and 76% for the

person trajectories. In contrast to the frame-based results,

DeepFlow is on average the most accurate approach, with

RLOF6 and DIS4 achieving similar performances for the

dense trajectories. An interesting observation is that RLOF6



FG (Static) BG (Static) FG (Dynamic) BG (Dynamic) FG(∅) BG (∅) ∅

EPE R2[%] EPE R2[%] EPE R2[%] EPE R2[%] EPE R2[%] EPE R2[%] EPE R2[%] t[sec]

FlowFields 0.756 8.27 0.213 2.79 1.069 14.92 2.571 51.42 0.913 11.595 1.392 27.10 0.915 11.74 43.53

RIC 0.859 8.64 0.243 3.31 1.166 15.69 2.623 53.58 1.013 12.164 1.433 28.45 1.015 12.32 8.30

CPM 0.701 7.09 0.247 3.63 1.026 13.94 2.585 51.78 0.864 10.517 1.416 27.71 0.868 10.69 14.74

DeepFlow 0.629 6.19 0.237 3.67 1.005 13.95 2.594 51.67 0.817 10.069 1.416 27.67 0.822 10.25 39.63

RLOF6 0.753 8.61 0.315 5.00 1.088 15.61 2.655 53.47 0.921 12.112 1.485 29.23 0.924 12.27 1.49

RLOF10 0.772 8.80 0.324 5.10 1.104 15.80 2.658 53.60 0.938 12.303 1.491 29.35 0.941 12.46 0.80

DIS4 0.627 5.72 0.356 5.85 0.928 11.86 2.665 53.67 0.777 8.790 1.511 29.76 0.784 9.01 1.70

DIS2 1.441 20.40 0.528 8.24 1.726 27.41 3.001 64.01 1.583 23.903 1.765 36.13 1.579 23.92 0.28

Tabelle 2. Evaluation results on the proposed CrowdFlow data set with common optical flow metrics. Dynamic comprised sequences with

and static without camera motion, BG - background motion vectors and FG - motion vectors located at persons of the crowd. t denotes the

average processing time on a Intel i9-7980XE CPU @ 2.60 GHz in multi-threading mode.

Dense Trajectories Person Trajectories

IM01 (Dyn) IM02 (Dyn) IM03 (Dyn) IM04 (Dyn) IM05 (Dyn) ∅ IM01 (Dyn) IM02 (Dyn) IM03 (Dyn) IM04 (Dyn) IM05 (Dyn) ∅

FlowFields 70.63 61.79 56.69 45.93 71.46 68.35 42.27 37.63 65.15 59.61 57.95 77.94 62.68 52.35 38.22 66.76 63.17 30.09 25.24 65.67 68.20 55.03

RIC 74.39 69.41 58.72 50.33 54.18 73.80 44.21 39.52 60.23 60.28 58.51 87.88 80.87 56.56 48.14 43.49 70.98 32.48 27.81 57.47 68.56 57.42

CPM 73.41 65.16 58.31 47.57 74.41 71.13 46.23 41.15 67.97 61.68 60.70 82.17 68.82 54.56 40.99 70.37 66.69 35.98 30.00 69.64 71.58 59.08

DeepFlow 83.84 81.90 63.33 55.52 83.38 80.87 57.08 56.65 71.25 64.67 69.85 99.19 95.32 68.60 63.04 83.18 81.20 53.82 52.22 76.32 79.15 75.20

RLOF6 82.80 78.31 63.16 57.68 87.46 86.76 50.56 50.53 69.86 68.73 69.59 97.70 92.37 66.70 65.08 88.73 90.22 43.56 46.47 72.60 80.12 74.36

RLOF10 80.14 73.95 62.05 55.54 85.44 84.39 48.80 47.84 67.53 67.41 67.31 96.00 85.02 63.08 59.77 85.97 86.69 39.41 40.48 69.09 78.70 70.42

DIS4 80.44 76.19 64.11 56.99 82.89 82.24 53.91 52.75 72.11 70.71 69.23 92.22 85.98 63.97 56.35 81.59 81.61 44.58 42.64 74.95 82.09 70.60

DIS2 47.55 33.03 36.52 25.32 22.59 19.76 26.79 20.89 27.63 27.91 28.80 40.81 22.39 22.86 15.37 9.05 6.72 13.63 9.72 17.86 18.10 17.65

Tabelle 3. Evaluation results on CrowdFlow data set with long-term motion metric. The tracking accuracy in percentage for the threshold

set to 15 pixels. Higher values denote more accurate results.

is very accurate on the long-term basis, while it achieves

only moderate results for common optical flow metrics. All

algorithms perform worse on dynamic sequences compared

to the static ones.

The evaluation results of the flow methods for the real-

world UCF crowd tracking benchmark is depicted in Ta-

ble 4. In addition, we report tracking performances of the

state-of-the-art in that area. Although the trajectories are

only computed by simple bilinear interpolation, the optical

flow methods achieve competitive results. It shows that me-

thods considered to be highly accurate such as FlowFields,

RIC and CPM also behave less accurate than DeepFlow,

RLOF and DIS. Meanwhile, the ranking for the UCF crowd

tracking is consistent to the proposed CrowdFlow dataset

and also its quantitative results are similar. Note that due

to the higher resolution of the CrowdFlow sequences the

tracking accuracy threshold of 15 is a stricter measurement

compared to the lower resolution (720× 480 or less) of the

UCF crowd tracking benchmark. With this prove of con-

cept, we show that our synthetic dataset is better suitable to

assess optical flow algorithms for crowd analysis than exis-

ting optical flow benchmarks.

6. Conclusion

In this paper, we presented a novel optical flow bench-

mark targeting crowd analysis applications. In contrast to

previous benchmarks, our sequences contain up to 1451

partly independent moving individuals which poses a new

challenge. To cover classic and modern UAV based surveil-

lance scenarios, we rendered each sequence with static and

dynamic camera views. This gives us the unique opportu-

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6 Seq7 Seq8 Seq9 ∅

FlowFields 50 100 86 96 40 83 62 87 24 69.78

RIC 39 100 92 94 35 85 64 88 23 68.89

CPM 50 100 86 96 40 83 62 87 24 67.33

DeepFlow 60 100 88 96 59 84 65 89 33 71.56

RLOF6 64 100 91 96 60 89 67 90 36 77.00

RLOF10 63 100 91 96 57 88 67 88 33 75.89

DIS4 71 100 92 96 46 88 63 89 31 75.11

DIS2 54 66 86 83 16 80 35 64 19 55.89

BQP 86 99 96 97 78 96 67 90 78 87.44

NMC 80 100 92 94 77 94 67 92 63 84.33

Floorfields 74 99 83 88 66 90 68 93 47 78.67

Tabelle 4. Evaluation results on UCF crowd tracking dataset [1]

based on tracking accuracy with the threshold set to 15. Bot-

tom rows show state-of-the-art tracking methods for this dataset:

BQP [8], NMC [16] and Floorfields [1].

nity to study the impact of non-stationary camera setups.

We introduced a trajectory based long-term metric, which is

new to optical flow benchmarks, to capture time-dependent

motion estimation errors like drifting. In our experiments,

we showed that these metrics are more discriminative than

the common optical flow metrics such as EPE when it co-

mes to crowd related analysis like tracking. We showed

that the ranking of state-of-the-art flow algorithms on our

CrowdFlow benchmark differs significantly from existing

benchmarks. In experiments on the real-world UCF crowd

tracking dataset, we confirmed our ranking indicating the

usefulness of our benchmark approach for such applicati-

ons.
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