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Abstract

Shooting a live-action immersive 360-degree experience, i.e. omnidirectional content (ODC) is a technological chal-
lenge as there are many technical limitations which need to be overcome, especially for capturing and post-processing
in stereoscopic 3D (S3D). In this paper, we introduce a novel approach and entire system for stitching and color mis-
match correction and detection in S3D omnidirectional content, which consists of three main modules: pre-processing,
spherical color correction and color mismatch evaluation. The system and its individual modules are evaluated on two
datasets, including a new dataset which will be publicly available with this paper. We show that our system outper-
forms the state of the art in color correction of S3D ODC and demonstrate that our spherical color correction module
even further improves the results of the state of the art approaches.
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1. Introduction

In contrast to traditional cinema, where the viewer
perceives the world through a window i.e. the cinema
screen, virtual reality (VR) allows a person to be present
within the world by wearing a head-mounted display
(HMD) [1]. One of the most popular formats to deliver
VR content is 360-video, also called omnidirectional
video (ODV), VR-video or cinematic VR. Shooting a
live-action immersive 360-degree experience, i.e. omni-
directional content (ODC) is a technological challenge
as there are many technical limitations which need to be
overcome, especially for capturing and post-processing
in stereoscopic 3D (S3D). 360-video is mostly captured
with an omnidirectional multi-camera rig and stitched
together in post-production [2, 3, 4, 5]. In general, such
limitations result in artifacts which cause visual discom-
fort when watching the content with an HMD. The ar-
tifacts or issues can be divided into three categories:
binocular rivalry issues (e.g. color mismatch), conflicts
of depth cues (e.g. vergence-accomodation conflicts)
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and artifacts which occur in both monocular and stereo-
scopic 360-degree content production (e.g. stitching ar-
tifacts) [6].

In this paper, we focus on binocular rivalry issues,
in particular on color mismatch detection and correc-
tion in S3D omnidirectional content. Color mismatch
in multi-camera systems is an inherent problem due to
di↵erent camera and lens characteristics, di↵erent illu-
mination and reflections resulting from di↵erent camera
orientations, etc. Such color mismatches occur during
the stitching and blending process of multiple views into
a single monocular panorama, but also between the left
and right view of a stereoscopic panorama, which often
results in visual discomfort [7].

In this context, we introduce a novel approach and
entire system for stitching and color mismatch correc-
tion and evaluation in S3D omnidirectional content. The
system consists of three main modules: pre-processing,
spherical color correction and color mismatch evalua-
tion as shown in Figure 1. During the pre-processing
step, multiple camera views are geometrical aligned
and stitched together to S3D omnidirectional images
(ODIs). A global color matching (GCM) module is ap-
plied in order to reduce substantial color mismatches be-
tween the di↵erent camera views.

As global color matching cannot handle scene de-
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Figure 1: Overall color mismatch correction system.

pendent issues like lens flares and polarization issues
properly, as they mainly occur locally, we implemented
a spherical color correction step consisting of a local
color matcher with spherical adaption (LSCM). The lo-
cal color matcher is based on optical flow to estimate
pixel correspondences between the left and right stereo-
scopic views.

Finally, our patch-based color mismatch evaluation
module [8], which is used for validation purposes, mea-
sures and visualizes color mismatch, which might still
be present, between the left and right stereoscopic ODIs.
While the entire color correction approach is applied in
the RGB color space and uses an optical flow approach
introduced in [9], the color mismatch evaluation module
is applied in the Lab color space and uses semi-global
block matching as introduced in [10]. This allows a
more objective and independent evaluation of still ex-
isting color discrepancies between the views.

Each of the modules works independently and could
be used in di↵erent applications. For instance, the
spherical color correction as well as the patch-based
color evaluation module can be applied on already ex-
isting S3D omnidirectional datasets.

Then, we evaluate the system and individual mod-
ules on two datasets (a new dataset with six sequences
captured with di↵erent multi-camera rigs and a dataset
with 15 ODIs introduced in [11]) and compare it against
the state of the art, namely the professional solutions
Cara VR1 and Google Jump2 which is based on the
work in [4], and the color correction approach recently
introduced in [11]. We will show that our entire sys-
tem outperforms all three methods and demonstrate that
our individual spherical color correction module even
further improves the results of the state of the art ap-
proaches. Furthermore, we will also show that our local
color matcher without spherical adaption even outper-
forms the method introduced in [3] for rectlinear and
cylindrical panoramas.

1https://www.foundry.com/products/cara-vr
2https://vr.google.com/jump/

Finally, we make the new dataset consisting of six
360-degree sequences including the source views and
stitched results using our approach and the state of the
art approaches publicly available with this paper.

The contribution of this work can be summarized as
follows:

• A novel and entire system for color correction and
evaluation in S3D omnidirectional content.

• A novel and e�cient global color matching ap-
proach for ODIs.

• A novel and e�cient local color matching ap-
proach with spherical adaption.

• A comprehensive analysis of our proposed method
against the state of the art.

• A new dataset with six 360-degree sequences.

The remainder of the paper is organized as follows.
In Section 2, related work in artifact detection and color
correction is reviewed. Then, in Section 3, we describe
the proposed system for stitching, color correction and
color mismatch evaluation. In Section 4, we evaluate the
entire system and independent modules against the state
of the art with a comprehensive amount of data. Finally,
in Section 5, the paper concludes with a summary and
discussion.

2. Related Work

Over the recent years, binocular rivalry between
stereoscopic images has been investigated in detail for
traditional S3D content, e.g. for cinema screens [7, 12]
and 3D-TV [13, 14], and more recently for omnidirec-
tional content for HMDs [15, 6]. A major objective for
the assessment of S3D quality is to develop objective
metrics for view asymmetries which are highly corre-
lated to user scores of subjective quality tests.

In [16], the authors investigated with subjective tests
how geometrical misalignments and color/luminance
mismatch between the views have an influence on the
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viewer annoyance and compared the results with objec-
tive metrics. The authors of [17] proposed several ob-
jective metrics for luminance mismatch and evaluated
their correlation with the results of subjective experi-
ments. In [18], a method for detecting stereo camera
distortions based on statistical models was presented in
order to evaluate vertical misalignment, camera rota-
tion, unsynchronised zooming, and color mismatch in
S3D content.

A large variety of artifact detection methods, includ-
ing a method for the detection of color mismatch, was
introduced in [19]. The authors used the disparity to re-
construct one view from the other and compared the col-
ors from the original and the reconstructed view based
on the mean square error in the RGB color space. More
recently, in [6, 20], S3D quality assessment methods for
stereoscopic ODIs were introduced which also focus on
color mismatch detection.

In the computer vision and multi-view video process-
ing communities, the initial e↵orts on solving color mis-
matches between multiple views used exposure com-
pensation (or gain compensation) [21]. This approach
adjusts the gain level of images to compensate for ap-
pearance di↵erences caused by di↵erent exposure lev-
els. However, this approach may fail in the case of local
di↵erences e.g. caused by lens flares or polarization.

The authors of [22] propose a simple method to com-
pute 3D lookup tables with a non-linear process that
minimises the colorimetric properties of the source im-
ages. Wang et al. [23] proposed a robust algorithm to
correct the color discrepancy between images, which
neither requires a color calibration chart/object, nor ex-
plicitly compensates for the image as a whole. Instead,
they correct the image region by region using local fea-
ture correspondences.

Dudek et al. [9] proposed a combination of a global
and local color correction approach. While the global
color correction is performed using a classic histogram
based method for the entire image, the local color cor-
rection is a region-based approach using optical flow es-
timation. In [24], a method is proposed that combines
global and local color information to correct color dis-
crepancies between stereoscopic image pairs. The algo-
rithm uses dense stereo matching and global color cor-
rection to initialise color values, and then improves the
local color smoothness and global color consistency of
the resulting image while maintaining the initial color
as much as possible.

For large baseline multi-view video, Ye et al. [25] in-
troduced a robust color correction method that enforces
spatio-temporal color consistencies and gradient preser-
vation by solving a global optimization problem. The

authors of [26] proposed an e↵ective color correction
method for multi-view image stitching which first finds
coherent content regions in inter-image overlaps, where
reliable color correspondences are extracted, and then
parameterizes a color remapping curve as transform
model, and expresses the constraints of color consis-
tency, contrast and gradient in an uniform energy func-
tion.

The image processing and computer graphics com-
munities were developing similar color manipulation
methods, called color transfer techniques. These meth-
ods transfer the color feel from a palette image to a
target image, and assume that the content of the im-
ages is di↵erent. The earliest work in this area was
by Reinhard et al. [27], who proposed transforming
the mean and standard deviation of each color chan-
nel in the target image to match that of the palette im-
age. Since then, more complex techniques have been
used to model the color distributions of the images more
accurately, including histograms and Gaussian Mixture
Models [28, 29]. While global color transfer functions
are often used, including a�ne, radial basis and opti-
mal transport functions [30, 31, 32], local techniques
have also been proposed to allow for more flexibility in
the recoloring [33, 34]. Recently, Grogan and Dahyot
[35, 36] proposed a color transfer technique that could
also be enhanced to take into account color correspon-
dences between the target and palette images, ensuring
the method could be used to color correct images of the
same scene. They showed that this method performed
as well as other state of the art color corrections tech-
niques, with the advantage of being more robust to cor-
respondence outliers. In Croci et al. [11], the authors
extended this work and demonstrated that it can be ap-
plied to also color correct stereoscopic ODIs. Besides
a comparison of our approach with current professional
solutions like Cara VR and Google Jump [4] for video
sequences, we will also compare our local color match-
ing approach against the approach introduced in [11] us-
ing the same dataset. Finally, we compared our LCM
method, i.e. without spherical extension, against the
method described in Zhang and Liu [3].

Our entire proposed system is most related to the
work in [4] with the addition of applying local color
correction to the finally stitched and globally color cor-
rected ODVs.

3. Proposed Method

Our overall approach consists of the following main
modules: global geometric alignment and stitching,
global color matching (GCM), local spherical color
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matching (LSCM), and independent color mismatch
evaluation. The entire system is illustrated in Figure 1
and will be described in detail in the following subsec-
tions.

3.1. Pre-processing

3.1.1. Global Geometrical Alignment and Stitching
As the whole process of geometrical alignment,

stitching and blending is beyond the scope of the paper
but an important pre-processing step, we describe this
process briefly. Stitching, or combining of partial views
into one spherical image [37, 38, 2, 4, 39, 5], requires
a precise calibration of the camera model. In general,
each camera of an omnidirectional camera rig is mod-
elled by a set of parameters: intrinsic parameters (sensor
resolution, sensor center, focal length, lens distortion
and field of view) and extrinsic parameters (focal point,
camera orientation). Methods to calculate these param-
eters consist of finding point correspondences between
the di↵erent views, a global numerical solver method
and an outlier removal step to handle false point corre-
spondences. A good overview can be found in [38].

Finding initial point correspondences between the
camera views, however, can be very challenging with-
out any knowledge about the used camera rig. Thus,
rig manufacturers often provide so-called rig templates,
which are nominal models expressing the rig geometry,
and which are used as basis for an iterative refinement
to match the mechanical variations of the actual rig unit.

After calibration, the partial views can be mapped
onto a spherical surface to produce an omnidirectional
image (ODI). For overlapping areas between the views,
multiple possible pixel values are available. A simple
approach would be to select the pixel value correspond-
ing to the nearest view, i.e. the view with the smallest
angular distance between its center and the pixel loca-
tion in the overlapping area. Thus, the ODI consists of
a mosaic of similar sized adjacent patches, each repre-
senting one camera view as illustrated in Figure 2.

However, even with a perfectly calibrated camera
model, it is impossible to map the 3-dimensional scene
correctly onto a spherical surface due to the parallax be-
tween the camera views which do not share the same
center of projection [40]. Hence, artifacts will occur at
the stitch lines.

To reduce the stitching artifacts, pixel blending
within the overlapping areas is commonly applied as il-
lustrated in Figure 2, where the area between the yel-
low lines is mapped and blended from di↵erent cam-
era views. Cross-blending of pixel values from di↵er-
ent views, however, may result in ghosting, i.e. double

Figure 2: Example of stitching for a 6 camera cube rig design.
Stitched camera views in a sphere without blending (left) and with
blending (right). The region between the yellow lines is the blending
area.

images in highly textured regions [41]. Also, other arti-
facts like seams within objects might occur if such ob-
jects cross these stitching regions due to imperfect scene
segmentation [42].

To reduce artifacts like double edges or visible seams
within objects, we use a local image alignment, which is
based on optical flow estimation [9], and correct the par-
allax along stitch lines. Additionally, we apply blending
to further reduce the visibility of the stitches caused by
color mismatches between di↵erent views.

3.1.2. Global color matching
We found that the global mismatch between the in-

dividual cameras is owed principally to each camera
separately adjusting its “gain” and “color temperature”.
Even if many rigs support a joint regulation of these set-
tings, they are frequently left intentionally to drift sep-
arately between cameras: Adjusting all cameras for the
worst case, like when one camera is pointing to the sun,
would result in quite poor settings for the camera point-
ing to a dark floor, for example.

Both gain and color temperature are basically scale
factors applied to the camera image: Gain is a lin-
ear scale of the signal, while temperature setting ba-
sically balances the scale of the red component versus
the blue component to compensate the type of lighting
(e.g. sunny versus cloudy, fluorescent versus tungsten)
of the scene. As a consequence, the pixel values cor-
responding to the same point of the scene but captured
by di↵erent cameras of the rig, can di↵er substantially.
However, knowing that the main reason is that of each
camera applying a scale factor to all its pixels, we can
reasonably assume that the relation between pixel val-
ues for the same point of the scene will be that of a scale.

In our proposed GCM method, to minimize color
mismatches between the camera views, we try to find
such a set of scale factors S i = (S r

i , S
g
i , S

b
i )T , where
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{r, g, b} represents the color channels for each cam-
era Ci of the rig with i = 1, ...,m. Before deriving
the color matching process, however, we need to take
into account how the pixel values are encoded, so that
pixel values can be correctly compared and eventually
matched. The image pixel values produced by the cam-
eras are mostly gamma encoded in logarithmic scale in
order to reduce the volume of the data. In such a case,
we first need to convert all of the camera source images
Ii, from their gamma encoded pixel values, into linear
light encoded images Li as follows:

Li = E�1(Ii), (1)

where E�1(Ii) is the inverse luminance transfer function
applied to image Ii.

A large amount of luminance transfer functions E(L)
or “gamma curves” exists as almost every camera brand
defines its own functions. As an example, a commonly
used transfer function is the “ITU-R Recommendation
BT.709 transfer function” [43] defined as:

E(L) =

8>><
>>:

4.500L for L < 0.018
1.009L0.45 � 0.099 for L � 0.018

(2)

where L is the linear light encoded image and normal-
ized to {0, 1}.

Our proposed GCM method needs to take into ac-
count the use of equidistant cameras with wide-angle
lenses, which are commonly used in current omnidirec-
tional camera rigs. We implemented an iterative method
where we match one camera versus all the other cameras
by mapping their images into a common plane. To avoid
the complexity of working in an omnidirectional, spher-
ical image space, we utilize the fact that, while each
camera covers a segment of a sphere, the image captured
by each camera sensor is a planar, 2-dimensional image
with limited non-linearity. Basically, we split the sphere
into a set of planar, overlapping patches equivalent to
the sensor spaces and dimensions. For each camera Ci
and its image Li, in its sensor space with i = 1, ...,m
as shown in Figure 3a and Figure 3c, we create a com-
bined spherical stitched image of all cameras C j with
j = 1, ...,m and j , i as shown in Figure 3b. We then re-
project the result as image L0i into Cartesian coordinates
of camera view Ci as illustrated in Figure 3d: Note that
this Figure 3d shows how the other five camera views
overlap with the current camera view. In our example,
only four of the other cameras can be seen, as the fifth
camera faces in the opposite direction and has no over-
lap at all.

L0i = ⌦8 j,i(Lj,C j) (3)

The ⌦() function represents the entire spherical stitch-
ing and re-projection operation, combining all the cam-
era views except camera view Ci. We use a simplified,
fast stitching operation ⌦() without use of registration,
as the resulting L0i will be used only for iterative color
matching of image Li.

The process behind the ⌦() function starts with
an empty ODI and iteratively adds the individual re-
projected camera views, calculates the distances to the
camera centers for any point covered by more than one
camera view, and chooses the nearest one, i.e. performs
an image mosaicing to map patches into the image plane
similar to [44], but adapted to the spherical space. To
avoid hard cuts between the patches, cross-blending is
used at the edges of the patches, where the distance to
the nearest cameras is similar.

Finally, we compare and match the pixels of image Li
with the combined image L0i representing all the other
cameras views. Based on the comparison result, we
modify the scale factors of camera Ci.

Depending on the degree of the overlap between the
camera views C j, image L0i consists of valid pixels and
unfilled pixels, usually resulting in a hole in the center
of the sensor space of the current camera Ci as illus-
trated in Figure 3d. On the other side, image Ii has valid
pixels only inside a circular area given by the lens view
angle, commonly smaller than the whole sensors area as
shown in Figure 3c. Hence, we can create a mask Wi as
intersection of pixels valid in both Li and L0i as depicted
in Figure 3e:

Wi =

8>><
>>:

1 where both Li and L0i are defined
0 otherwise

. (4)

We then compare the pixel values of Li and L0i only in-
side this mask Wi, i.e. pixel values which are defined in
both images.

Assuming that the relation between the pixel values
for the same scene point captured by di↵erent cameras is
basically that of scale, we need to compute the average
scale factor, i.e. geometric mean, in the overlap area be-
tween cameras. However, we substituted the geometric
mean by a computationally more convenient arithmetic
mean using the equivalency

Q
x = e

P
log(x).

As the gain is often expressed in logarithmic units of
“stops”, where one ‘stop” unit is defined as doubling the
light amount, we substitute the linear scale factors S i by
“stop” unit factors Gi = log2(S i). This enables us to
perform the whole calculation in logarithmic scale. The
average scale �Gi(k) is then calculated as follows:

�Gi(k) =
X

8xy

Wi · log2
Li · 2Gi(k)

L0i(k)
, (5)
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Visualization of GCM in spherical coordinates and in cam-
era space of current camera Ci: (a) Image of current camera Ci
mapped onto a sphere, (b) all images of cameras C j,i mapped onto
a sphere, (c) image Li from camera Ci in sensor space, (d) image L0i
in sensor space of camera Ci, (e) overlap mask Wi between Li and L0i ,
(f) Li and L0i in mask Wi.

where k is the iteration step, i.e. �Gi(k) is updated after
each iteration. Notice that the image L0i(k) is created by
stitching all images but Li while applying their corre-
sponding gains Gi(k), so it will change for each iteration
k. Using the Newton method, we calculate the corrected
gain Gi(k+1) for the camera Ci with:

Gi(k+1) = Gi(k) + ↵ ·
�Gi(k)P
8xy Wi

, (6)

where ↵ is the step size of the Newton’s method, and
the weighted sum �Gi(k) is normalized by the sum of all
weights Wi.

We did tests using optical flow based registration for
the Li match as well as part of the⌦() function (Eqn. 3).
Therefore, we measured the average di↵erence between
the GCM values obtained with and without registration
using the dataset described in Table 2. The results are
presented in Table 1. We found out that the resulting

ODV With Registration No Registration Di↵

1 0.03131 0.03414 0.00162
2 0.22216 0.22400 0.00159
3 0.54748 0.54547 0.00130
4 0.42168 0.42681 0.00324
5 0.51241 0.51897 0.00325
6 0.14870 0.16200 0.00496

Avg. 0.21031 0.20867 0.00141

Table 1: Comparison of the standard deviation of GCM Gi values with
and without registration. Notice that the average Gi should be close
to zero as the GCM corrections are designed to be relative to their
average. We calculated the standard deviation of the di↵erences for
each camera Gi.

GCM values di↵er only marginal between both cases.
This can be explained with Eqn. 5 which can be restated
as two independent sums (see Eqn. 7), making it easier
to understand that it is basically a simple comparison of
the overall brightness ratio across the overlap area of the
camera image and the combined remaining cameras in
logarithmic scale:

�Gi(k) = Gi(k)

X

8xy

Wi · log2 (Li)�
X

8xy

Wi · log2 (L0i(k)). (7)

We then iteratively repeat the global color matching for
each camera as described until a given degree of con-
vergence q < 0.0039 with q = �Gi(k) � �Gi(k�1). We
have chosen as reference one quantization step of the
source images (1/256 of the encoding range). As a final
result of GCM, we create globally color matched im-
ages Mi by applying the gains Gi(k) to all images Li with
i = 1, ...,m and transferring the linear encoded and color
matched images back into the original logarithmic scale
as follows:

Mi = E
⇣
Li · 2Gi

⌘
. (8)

The speed of convergence can vary depending on
the topology of the rig and the lighting conditions of
the scene. However the process is computationally not
complex and converges in short time. The whole algo-
rithm is summarized in Algorithm 1.

Usually, GCM is only performed with one frame and
then applied for the entire shot. However, if the illumi-
nation of the scene changes considerably over time, the
cameras auto-adjustment may gradually follow the new
lighting conditions, requiring to apply GCM at certain
time intervals. For intermediate frames of these inter-
vals, parameter interpolation can then be applied.

Typically our GCM process converges su�ciently af-
ter 5 to 15 iterations for the first frame. When GCM
is also applied at time intervals, we can use the previ-
ous converged GCM parameters as starting point for the
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Algorithm 1: GCM
Objective: To minimize the gain mismatch �Gi between the

views.
Input: Cameras Ci, images Ii with i = 1, ...,m, camera

parameters.
Initialization: k = 0, Gi(k) = (0, 0, 0)T

while �Gi(k) > q do

for (i = 1 to m) do

Create image L0i(k) using gains Gi(k);
Calculate �Gi(k) (Eqn. 5);
Calculate Gi(k+1) (Eqn. 6);

end

Increment k by 1;
end

Create globally color matched images Mi applying the gains
Gi(k) to images Ii (Eqn. 8);

Output: The globally color matched images Mi.

GCM at new frame position, reducing the number of it-
erations for this new position. Finally, after GCM is ap-
plied to all source camera images, the ODIs are stitched
together as described in Section 3.1.1.

Our GCM method uses a single 3-component gain per
image as a model. Much more complex global matching
methods could be applied. However, there are impor-
tant sources of color imbalance, like e.g. lens flare and
polarization issues, that are inherently local, and which
cannot be addressed by global color matching alone.
Thus, we further concentrated on local color matching
to further improve the results instead of further refining
GCM.

3.2. Local spherical color matching

In order to deal with local color mismatches and
scene dependent anomalies like lens flare and polarized
light, we introduce a novel local spherical color match-
ing (LSCM) approach.

When polarized light is entering the lens in very shal-
low angles, especially near the fringe of the fisheye
lenses, it gets reflected or refracted in dependence of
its entrance polarization. In a simple test using a con-
sumer omnidirectional camera, the pixel values near the
fringe changed up to to 33% for the same light source
but rotated light polarization. Most panorama stitch-
ing approaches propagate these local color mismatches
into the stereoscopic ODIs, resulting in binocular ri-
valry, where the same point of the scene has brightness,
color or sharpness di↵erences between the left and right
eye views. Thus, our goal is to reduce these local color
imbalances between stereoscopic ODI pairs VL and VR

for both ODIs stitched and globally color matched as
outlined in the previous subsections as well as ODIs

stitched by state of art approaches, which will be evalu-
ated in Section 4.

Without loss of generality, we always modify the left
view VL to match its colors to the right view VR in the
remainder of this section.

3.2.1. Local color matching
We first describe our local color matching (LCM)

process for common, rectilinear stereoscopic images by
utilizing optical flow and color transfer from one eye
view to the other. A naı̈ve approach would be to directly
match the colors of each corresponding pixel from the
optical flow estimation. However, this would produce
severe artifacts due to the unavoidable imperfections in
the optical flow field, with an example of artifacts shown
in Figure 10c. Therefore, our method contains an addi-
tional filtering stage to apply color transfer locally in
order to not introduce artifacts resulting from incorrect
pixel correspondences.

We first estimate the optical flow h = (u, v)T between
the image of the left view VL and the image of the corre-
sponding right view VR as proposed in [45] . Then, we
warp the right view to the left view using h, resulting
in VR

warped, and compute the di↵erence between VL and
VR

warped. The resulting di↵erences are then filtered with
a Gaussian filter kernel as follows:

C = G� � (VL � VR
warped), (9)

where C is a smooth, blurred image representing the
overall local di↵erence between left and right view. The
standard deviation � of the Gaussian filter controls the
smoothness of the correction, balancing between the
naı̈ve pixel-wise color correction (� = 0) and a kind
of region-based color correction (� > 0) by taking the
influence of neighboring pixels into account in order to
overcome the inaccuracy of the optical flow.

Finally, we color correct VL by subtracting the di↵er-
ence C at each pixel:

V 0L = VL �C. (10)

We found out that for � = 0.5 the introduction of
additional artifacts resulting from the errors in the opti-
cal flow estimation is marginal or not visible, while the
color matching between the views is substantially im-
proved (see evaluation results in Section 4).

3.2.2. Adaptation of LCM to spherical images
The local color correction as described in the previ-

ous subsection could be applied directly in the equirect-
angular format of the ODIs. However, equirectangu-
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Figure 4: Visualization of two overlapping patches on the sphere. The
area between the two yellow lines is the overlapping area.

Figure 5: Projection of two overlapping patches into the ERP format:
patch P1 centered in the ERP image (top), patch P2 centered in the
ERP image after rotation of the sphere (bottom).

lar images are strongly non-linear near the poles. Fur-
thermore, the continuity within a sphere is lost due to
cutting and unrolling the spherical image, which would
also result in missing pixel correspondences near the
left and right borders in the equirectangular projection
(ERP) format that may cross the cut line. Obviously the
estimation of the optical flow in these extreme regions
would fail. In order to circumvent these limitations, we
split the spherical image into multiple patches and deal
with these as if they were planar images.

We found that our color matching method is relatively
insensitive to non-linearity caused by mapping a spher-
ical patch into a plane, and that it is su�cient to split
the sphere into two elongate patches P1 and P2 equal
in their shape and size as shown in the Figure 4 and
highlighted in blue and red. We then map both patches
into the ERP format by rotating the sphere 90� along
the forward X axis and 180� around the vertical Z axis
as shown in Figure 5. This ensures that each patch has
minor distortions as it is centered around the equator.

The rotation can be expressed as a simple transforma-

Figure 6: Distance D(p) from the central line defined by points p.

tion matrix:

p2 = S �1(R · S (p1)) R =

2
666666664

�1 0 0
0 0 1
0 1 0

3
777777775 , (11)

where p2 is the new location of point p1 = (x, y)T af-
ter the sphere rotation, S () represents the transforma-
tion from ERP to spherical projection and S �1() is the
inverse transformation, respectively.

When estimating the optical flow separately for each
patch, slightly di↵erent values will result for scene
points located around the edges of the patches. To
mask any possible discontinuity when mapping back the
processed patches into spherical coordinates, we widen
their areas and linearly blend these overlapping patches
across the edge zone as shown delimited by the yellow
lines in Figures 4 and 5.

We define the blending mask B for a patch by a
Voronoi style diagram, where each cell is formed by
points nearer to its center than to the center of other
cells. Instead of a single point, however, we define
the cell center as a line segment defined by the points
{p | px 2 [�⇡/2,+⇡/2], py = 0} with px and py as the
coordinates of the points in the ERP format, as shown
in Figure 6. The distance D(p) of a point from the line
segment is calculated as follows:

D(p) =

8>><
>>:

q
(|px| � ⇡/2)2 + p2

y if |px| � ⇡/2
|py| otherwise.

(12)

If d1(p) = D(p) is the distance measure for the map-
ping case of patch P1 into for the ERP format, then d2
can be calculated for the mapping case of patch P2 with
the following equation by transforming the points p into
spherical coordinates, apply the rotation and transform-
ing them back into the ERP format according to Eqn.
11:

d2(p) = D(S �1(R · S (p))) (13)

8



Algorithm 2: LSCM
Objective: To locally match colors between stereoscopic ODIs.
Input: Stereoscopic pair of ODIs in ERP format, standard

deviation � of Gaussian filter
i. Map left and right spherical ODIs into ERP format resulting in

images VL
x and VR

x with x 2 {1, 2} (x = 2 in the case of rotated
images).

ii. For all pixels p 2 {VL
x ,VR

x } estimate the optical flow h between
the stereoscopic pair.

iii. Compute the color di↵erence C according to Eqn. 9.
iv. Correct VL

x according to Eqn. 10.
v. Rotate original left and right spherical ODIs according to Eqn.

11 and repeat steps i. to iv.
vi. Undo rotation for V0L2 .

vii. Compute the blending mask B according to Eqn. 14.
viii. Create locally color matched stereopair {V0L,VR} by using the

blending mask B according to Eqn. 16.

Output: The locally color matched left image V0L.

Finally, the blending mask B(p) for both patches in the
ERP format is defined as

B(p) =

8>>><
>>>:

0 if d(p) < 0
d(p) if d(p) 2 [0, 1]
1 if d(p) > 1

(14)

with
d(p) =

d1(p) � d2(p)
w

+
1
2
, (15)

where w defines the width of the transition region of the
blending mask with an opacity 0 < ↵ < 1. For w = ⇡,
the transition region would have the maximum width,
going from the center of the image to its borders. In our
computation, we chose a value of w = ⇡/4, as we found
that it produces very smooth transition while it keeps
the transition region relatively small.

Applying the color correction to the left image VL
1 and

its rotated version VL
2 according to Eqn. 10 by using the

blend mask B, the final color corrected image V 0L can
be computed with:

V 0L = (VL
1 �C) · B + (VL

2 �C) · (1 � B). (16)

The whole process of local color matching for spher-
ical images (LSCM) is outlined in Algorithm 2.

3.3. Color Mismatch Evaluation
In order to evaluate the results of the proposed color

correction steps presented in the previous subsections,
we implemented a simplified version of the method pro-
posed by Croci et al. [8], obtained by discarding the
saliency. The analysis consists of three main compo-
nents: the spherical patch extraction, the color mis-
match analysis between corresponding patches in the

(a) (b)

Figure 7: Voronoi patch extraction in (a) spherical and (b) ERP for-
mat.

left and right stereoscopic view using color statistics,
and the visualization and computation of color mis-
match scores.

For the extraction of approximately equally sized
patches from the ODI, first a spherical Voronoi diagram
[46] is computed from evenly distributed points on the
sphere. Each cell of the Voronoi diagram corresponds
to a patch. Figure 7 shows the spherical Voronoi dia-
gram computed from 30 evenly distributed points on the
sphere, and its projection into the ERP format overlaid
with an input image. In the next step, each spherical
patch of the ODI is mapped into the ERP format, and
the pixel colors of each patch are obtained by sampling
the ODI in ERP format using bilinear interpolation.

Once the patches are extracted, the disparity maps for
each patch are estimated using the Semi-Global Block
Matching approach described in [10] which delivers
good results at reasonable computational costs. Since
the disparity estimation can be noisy and inaccurate, we
apply a consistency check for the disparity maps, and
only disparity values which are consistent are used for
further computations. If dL2R and dR2L are the disparity
maps from left to right view, and from right to left view,
then the disparity at pixel (x, y) in dL2R is valid if

|dL2R(x, y) + dR2L(x � dL2R(x, y), y)|  �, (17)

where � is a predefined threshold.
From the consistent pixels of each patch two color

statistics are extracted: the mean and standard deviation
of the color channels in the Lab color space similar to
[27]. Assuming that µL and µR are the mean color vec-
tors of the left and right view of the patch i, and that �L
and �R are the standard deviation color vectors of the
same patch, then the color mismatch score of the patch
i is defined by the following equation:

CMS i =

q
kµL � µRk2 + � k�L � �Rk2 (18)

where � is a tuning parameter that was set to one for
the generation of the results. The patch scores can also
be visualized using the jet color map as shown in Fig-
ure 8b.
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In addition to the patch scores, we also compute a
global score CMS global by simply averaging the patch
scores:

CMS global =

PN
i=1 CMS i

N
. (19)

4. Evaluation

The evaluation is performed in three parts. First we
evaluate the modules and the influence of di↵erent pa-
rameter settings with respect to quality and robustness
in Section 4.1. In Section 4.2, we compare our entire
system against current state of the art post-production
tools (i.e. Foundry’s Cara VR and Google Jump as in-
droduced by Anderson et al. in [4]) which are used for
professional productions using 6 video sequences for
which all source views were available. Furthermore,
we compare our LSCM method against the method de-
scribed in Croci et al. [11] using their dataset consist-
ing or 15 stereoscopic ODIs. Additionally, we com-
pare our LCM method, i.e. without spherical extension,
against the method described in Zhang and Liu [3] us-
ing their dataset consisting of 21 planar scenes (stitched
from 2 views) and one 360-degree cylindrical panorama
(stitched from 16 views). Finally, we evaluate the per-
formance of our modules with a benchmark test on the
video dataset in Section 4.3.

4.1. Evaluation of modules and parameter settings
In order to demonstrate and evaluate the performance

of the di↵erent modules, we selected a stereoscopic ODI
shown in Figure 8 characterized by local color mis-
match in parts of the image. We first applied our GCM
approach to match the source views globally. Then,
we applied the LSCM approach with di↵erent smooth-
ness parameters, i.e. di↵erent standard deviations for
the Gaussian filter kernel. For validation purposes, the
color matched images were then analyzed with the in-
dependent color mismatch analysis method presented in
Section 3.3.

The averages of the color mismatch patch scores are
illustrated in Figure 9. In this Figure, we can see how
GCM removes most of the color mismatch, and how
LSCM is able to reduce the color mismatch even fur-
ther. It is worth noticing, that the smoothness param-
eter influences these results. By reducing this parame-
ter, the color mismatch improves, but on the other hand,
artifacts are introduced due to incorrect matches in the
optical flow estimation. Figure 10 shows some close-
ups from the color corrected results. As can be seen in
this Figure, the artifacts related to the optical flow are
present only for � = 0. We found out that for � = 0.5

ODV Camera Type Camera Res. Geometry ODV Res.

1 Insta360 Pro 3200x2400 6x1 4096x2048
2 iZugar Z6X3DC 2704x2028 3x2 4096x2048
3 Google Odyssey 2704x2028 16x1 5760x2880
4 Google Odyssey 1920x1440 16x1 5760x2880
5 Google Odyssey 2704x2028 16x1 5760x2880
6 Vuze 1600x1088 4x2 4096x2048

Table 2: Dataset of used ODVs

the introduction of additional artifacts resulting from the
errors in the optical flow estimation is marginal or not
visible, while the color matching between the views is
substantially improved. Thus, in all further evaluations,
we set � = 0.5.

4.2. Comparison with state of the art

In order to compare our entire system against the state
of the art post-production tools which currently domi-
nate the market, i.e. The Foundry’s Cara VR (a pro-
prietary algorithm based on unpublished work, but con-
sidered to be the industry reference) and Google Jump
which is based on the paper of Anderson et al. [4],
we first created a dataset (see Table 2) of stereoscopic
ODVs from a variety of commercially available stereo-
scopic omnidirectional cameras, where both unstitched
and stitched data were available. As we aimed for a
real world application, we collected six 100 frames long
samples captured with static and moving cameras to ex-
plore the stability of our system over time. ODVs 1, 3,
4 and 5 were captured with rigs using a regularly spaced
ring of single cameras, while ODVs 2 and 6 were cap-
tured with rigs using parallel stereo camera pairs.

Table 3 contains the average color mismatch scores
and standard deviations for all 100 frames for each
ODV using 6 di↵erent methods. The results of the best
method are highlighted in bold. As ODVs 1, 2 and 6
were not captured with a Google rig, we could not ap-
ply the Google’s stitching method with this data. The
table shows that our stitching approach with GCM and
LSCM provides the best results for most of the ODVs.
For ODV 1 and ODV 3, the combination of Cara VR +
LSCM and Google + LSCM, respectively, provides the
best color matching results.

Figure 11 shows the color mismatch scores for all
frames over time. The individual curves show a high
stability over time after LSCM is applied. Only ODV 6
(see Figure 11f) shows some variation over time which
is especially noticeable if LSCM is not applied. This
was caused by a moving camera rig which makes the
stitching and global color matching of the source views
more challenging. However, the LSCM not only re-
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(a) (b)

Figure 8: Stereoscopic ODI used for the evaluation of the proposed method: (a) Input and (b) visualization of color mismatch (green colored
patches indicate color mismatch).

Method ODV 1 ODV 2 ODV 3 ODV 4 ODV 5 ODV 6

Cara VR 0.2581 (± 0.0049) 2.0458 (± 0.0175) 1.2922 (± 0.0153) 1.9316 (± 0.0081) 2.0775 (± 0.0199) 1.6288 (± 0.4166)
Cara VR+LSCM 0.1013 (± 0.0021) 0.2611 (± 0.0048) 0.1652 (± 0.0079) 0.1958 (± 0.0065) 0.1847 (± 0.0083) 0.4486 (± 0.0350)

Google [4] - - 0.4003 (± 0.0023) 0.7523 (± 0.0122) 0.9823 (± 0.0375) -
Google [4]+LSCM - - 0.0990 (± 0.0043) 0.1509 (± 0.0059) 0.2352 (± 0.0105) -

Ours+GCM 0.4825 (± 0.0045) 0.8264 (± 0.0094) 0.4050 (± 0.0157) 0.7052 (± 0.0159) 0.6566 (± 0.0236) 1.2328 (± 0.1911)
Ours+GCM+LSCM 0.1411 (± 0.0037) 0.1843 (± 0.0035) 0.1331 (± 0.0052) 0.1299 (± 0.0069) 0.1095 (± 0.0041) 0.3856 (± 0.0194)

Table 3: Mean and standard deviation of the color mismatch scores for all frames in the sequence.

Method ODI 1 ODI 2 ODI 3 ODI 4 ODI 5 ODI 6 ODI 7 ODI 8 ODI 9 ODI 10 ODI 11 ODI 12 ODI 13 ODI 14 ODI 15

Source 7.4216 4.5972 1.3804 1.5043 3.0799 3.3265 2.1033 4.5528 2.6655 2.3739 4.2286 2.2239 2.5471 2.0127 3.3212
Croci et al. [11] 0.8347 0.7242 0.5343 0.6442 0.8884 0.8864 0.5492 0.7724 0.6697 0.6211 0.9884 0.8680 0.4765 0.6663 0.7803
LSCM 0.6693 0.5514 0.5285 0.3944 0.5224 0.7335 0.2955 0.5385 0.4760 0.5698 0.9258 0.7549 0.3467 0.2995 0.5531

Table 4: Comparison of color mismatch scores between Croci et al. [11] and our LSCM method.

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9 Scene 10 Scene 11

Zhang 1.1734 1.4560 1.2230 0.8471 1.3194 1.0212 1.6214 1.0016 1.3983 1.0532 0.8474
Zhang+LCM 0.1361 0.1150 0.0624 0.0915 0.2680 0.1915 0.3666 0.2331 0.2271 0.2717 0.1104

Method Scene 12 Scene 13 Scene 14 Scene 15 Scene 16 Scene 17 Scene 18 Scene 19 Scene 20 Scene 21 Panorama

Zhang 1.7260 0.7060 1.0976 1.3273 0.8953 1.9105 2.3900 1.8384 1.8370 1.8121 1.2877
Zhang+LCM 0.2642 0.4258 0.1773 0.1771 0.1503 0.4134 1.2939 1.1379 1.2325 1.0417 0.5820

Table 5: Comparison of color mismatch scores between Zhang and Liu [3] and our LCM method.

duces the color matching scores substantially, the scores
are also becoming stable over time.

Table 4 shows the comparison between our LSCM
method and Croci et al.’s method [11] based on a
dataset of 15 ODIs from [11]. The ODIs of this dataset
were captured with the following cameras: Vuze VR,
Omnicam-360, Panocam POD 3D, and Jumpgate rig.

Croci et al.’s method in average reduces the overall
color mismatch score to 23.03%, i.e. by a factor of
4.34, compared to the source, with the maximum re-
duction (11.25% compared to the source, i.e. a factor of

8.89) for ODI 1. On the other hand, our method reduces
the overall color mismatch score to 17.24% on average,
i.e. by a factor of 5.80, compared to the source, with

the maximum reduction (9.02% compared to the source,
i.e. a factor of 11.09) for ODI 1, respectively. The table
shows that LSCM outperforms the approach of Croci
et al. for all 15 ODIs under test. Finally, we com-
pared our LCM method, i.e. without spherical exten-
sion, against the method described in Zhang and Liu [3]
using their dataset consisting of 21 rectlinear scenes
(stitched from 2 views) and one 360-degree cylindrical
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Figure 9: Average of the Color Mismatch patch scores obtained with
di↵erent parameters.

(a) � = 5.0 (b) � = 0.5 (c) � = 0.0

Figure 10: Visualization of ptical flow artifacts with varying smooth-
ness parameters.

panorama (stitched from 16 views). This data set is not
ideal as the stitched images are far from spherical ODIs.
However, in order to demonstrate that our approach also
outperforms the state of the art in color correction even
for rectlinear and cylidrical panoramas, we applied our
LCM method to the dataset provided in [3] and mea-
sured the color mismatch scores accordingly. The re-
sults are shown in Table 5.

Adding our method on top of Zhang’s and Liu’s
results reduces the overall color mismatch score to
17.16% on average, i.e. by a factor of 5.8265 compared
to the source, with the maximum reduction by a factor
of 19.6 for scene 3, and with the least reduction by a
factor of 1.49 for scene 20.

4.3. Performance evaluation
As our approach is intended to be integrated into a

professional application, we run a performance evalua-
tion on an HP Z8 workstation with the following speci-
fications:

• CPU: 2x Intel Xeon E5-2687W v3 @ 3.10GHz

• RAM: 64GB

• GPU: NVidia Quadro P4000 with 8GB RAM

The evaluation results for the individual modules and
the entire color correction system are detailed in Ta-
ble 6. The average runtime for processing a frame with
stitching, GCM and LSCM is less than 1s, whereas a

Module/ GCM LSCM GCM+LSCM
ODV (per frame) (per frame) (per frame)

ODV 1 198ms 268ms 496ms
ODV 2 106ms 297ms 398ms
ODV 3 769ms 645ms 1311ms
ODV 4 542ms 631ms 1195ms
ODV 5 755ms 643ms 1410ms
ODV 6 64ms 260ms 317ms

Average 406ms 457ms 855ms

Table 6: Performance evaluation of individual modules and entire
color correction system (GCM includes also the stitching process).

large part is actually spent on the optical flow estima-
tion.

In order to compare the processing time with Google
Jump [4], we processed the slowest ODV 5 in 8K res-
olution. Here, our pipeline excluding LSCM has a pro-
cessing time of 953ms per frame whereas Google Jump
needs 60s per frame on a single machine with simi-
lar color mismatch scores (see Table 3 and Figure 11).
The entire pipeline (stitching + GCM + LSCM) has
a processing time of only 2.3s per frame with much
lower color mismatch scores compared to Google Jump.
Thus, we could demonstrate that our pipeline is quite
suitable for professional post-production tasks in real-
world applications.

5. Conclusion

In this paper, we introduced a novel approach and
entire system for stitching and color mismatch cor-
rection and detection of S3D omnidirectional content.
First, a global color matching (GCM) module was ap-
plied to video sequences where the source camera views
were available in order to reduce substantial color mis-
matches between the di↵erent camera views.

As global color matching cannot handle scene de-
pendent issues like lens flares and polarization issues
properly, as they mainly occur locally, we introduced a
spherical color correction step consisting of a local color
matcher with spherical adaption (LSCM).

Then, we evaluated the system and individual mod-
ules with a patch-based color mismatch detection mod-
ule [8] on three datasets (a new dataset with six se-
quences captured with di↵erent multi-camera rigs, a
dataset with 15 ODIs introduced in [11] and a dataset
with 21 rectlinear scenes and one cylindrical panorama
introduced in [3]) and compared it against the state of
the art. Our results showed that our color correction
approaches outperformed the professional software so-
lutions for ODVs, the method introduced by Croci et. al
[11] for ODIs and the method introduced by Zhang and
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(a) ODV 1 (b) ODV 2 (c) ODV 3

(d) ODV 4 (e) ODV 5 (f) ODV 6

Figure 11: Color mismatch scores for all frames of the ODVs.

Liu [3] for rectlinear and cylindrical panoramas. We
further demonstrated, that our LSCM method is even
able to improve the results of ODVs stitched with pro-
fessional tools, which currently represent the state of the
art.

The proposed method was developed with the goal
to integrate it into a professional workflow, where both
speed and quality are of high importance. Depending
on the amount of cameras and resolution of the ODVs,
a processing time of less than 1s per frame could be
achieved while improving the quality significantly com-
pared to the state of the art.

Finally, the new dataset consisting of six 360-degree
sequences including the source views and stitched re-
sults using our approach and the state of the art ap-
proaches is publicly available with this paper.
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