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Abstract

Avoiding bottleneck situations in crowds is critical for
the safety and comfort of people at large events or in pub-
lic transportation. Based on the work of Lagrangian mo-
tion analysis we propose a novel video-based bottleneck-
detector by identifying characteristic stowage patterns in
crowd-movements captured by optical flow fields. The
Lagrangian framework allows to assess complex time-
dependent crowd-motion dynamics at large temporal scales
near the bottleneck by two dimensional Lagrangian fields.
In particular we propose long-term temporal filtered Finite
Time Lyapunov Exponents (FTLE) fields that provide to-
wards a more global segmentation of the crowd movements
and allows to capture its deformations when a crowd is
passing a bottleneck. Finally, these deformations are used
for an automatic spatio-temporal detection of such situa-
tions. The performance of the proposed approach is shown
in extensive evaluations on the existing Jülich and AGO-
RASET datasets, that we have updated with ground truth
data for spatio-temporal bottleneck analysis.

1. Introduction

The analysis of crowd movements is of importance for
the safety and comfort of people in transport infrastructures.
Handling crowded scenes during public events (e.g. fan
parks, concerts, sport events) is a challenging task for secu-
rity personnel, police and crisis management teams. Espe-
cially the occurrence of bottlenecks during an event can lead
to panics due to overcrowding. An automatic bottleneck
identification system can aid the operator to prevent critical
situations by assessing characteristic crowd-movement pat-
terns. The aim of this work is to identify such events in the
spatial and temporal domain.

In computer vision the analysis of high density crowds is
performed on macroscopic perspective [17], i.e. the crowd
is assessed as a single entity. The behaviors of individuals

in a crowd are dependent on the crowd behavior [17, 9] and
modelled by fluid dynamic processes [2, 23, 11, 8]. Hughes
work [7] supports the assumption that crowds are a flowing
continuum and proposed three main behavioral hypotheses
for persons moving in a crowd. In [4], Bain and Bartolo also
contemplate pedestrian flows with the help of a hydrody-
namic model. Here, the flow behavior of polarized crowds
was examined by considering the border movements of the
crowd at the start of various marathons. To describe crowd
behavior for crowd simulation Still proposed in [21] three
main effects: i.) least-effort hypothesis means that people
are looking for the least strenuous route ii.) lane formation
implies that people walk most easily behind each other and
iii.) bottleneck effect occurs at a narrowing point with a
significant speed change of the crowd and represents at the
same time a critical point.

The following studies investigate the influence of the
bottleneck to the behaviour of the crowd before and within
the narrow pass. Seyfried et al. [15] shows an experimental
study in which the flow of unidirectional pedestrian streams
through bottlenecks was evaluated. The result was a linear
growth of the flow with a simultaneous increase in the width
of the bottleneck and the observation of the phenomenon
of lane formation within bottlenecks. Krüchten et al. [22]
recorded a dataset under laboratory conditions, which rep-
resents persons with different age, group sizes and social
group sizes in case of evacuation through a bottleneck. In
the study, the social aspect of passing through a bottleneck
was presented, which showed that with increasing social
group strength, the flow through the bottleneck increased.
The study of Sieben et al. [16], showed the influence of
the spatial structure and the perception of the participants in
comparison to physical measurements.

The data recorded in [10, 15, 16, 22] has been published
at the pedestrian dynamic archive and will be denoted as
Jülich dataset. Allain et al. [3] proposed the AGORASET
for crowd behaviour analysis containing corridors, obsta-
cles and escapes. The dataset consists of synthetic rendered
images and provides a higher variation and different point
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of views of the scenes.
Each scene of the two datasets contains physical bot-

tlenecks which are not always leading to congestion situ-
ations in pedestrian movements. Bottleneck situations can
also arise through situation-dependent events, whereby an
occuring bottleneck is defined by the flow of movement of
the persons. For this reason, the datasets were extended
with ground truth data that has both spatial and temporal
properties. Furthermore a new metric is presented for this
spatio-temporal problem, which makes the proposed and fu-
ture methods comparable.

In the work of Solmaz et al. [19], four additional crowd
scene properties (blocking, lane, ring/arch, fountainhead)
are detected in addition to bottleneck situations using opti-
cal flow. The method performs well for these properties, but
has problems with the superposition of motion patterns.

In this work we propose a novel video-based bottleneck
detector based on the evaluation of characteristic stowage
patterns in crowd-movements by segmenting the crowd
flow. The idea of this detector is that physical bottlenecks
are related to bottlenecks in the contours of the crowd flow
segments. To segment the crowd flow contour we apply
long-term analysis based on the Lagrangian framework pro-
posed in [8] and use the Finite Time Lyapunov Exponents
(FTLE) field to extract motion boundaries. High ridges
in the FTLE field indicate Lagrangian features that are as-
sumed to be located at motion boundaries. In addition we
propose a long-term temporal low-pass filtered FTLE to
suppress unsteady local features in the Lagrangian field that
are caused by heterogeneous motion of the people in the
crowd and lead to erroneous crowd flow contours.

The bottleneck location is defined by the center of a point
pair, which is found by geometrical and temporal consis-
tency constrains applied to bottleneck candidates. Bottle-
neck candidates are defined by defects on the contour, i.e.
points on the contour with a maximum distance to the con-
tours convex hull. To evaluate the performance of the pro-
posed system we manually annotated a selected set of bot-
tleneck sequences from the synthetic AGORASET and the
Jülich dataset.

2. Lagrangian Measures for Bottleneck Detec-
tion

The origin of Lagrangian methods lies in the visualiza-
tion and analysis of unsteady flows and has been proven
to be a powerful tool for analyzing computational fluid dy-
namics for instance to design fluid-dynamic systems. These
methods are used to describe non-linear dynamic systems
that are represented by a series of time-dependent vec-
tor fields. The pioneering work by Ali and Shah [2] first
showed that the Lagrangian methodology can be useful for
video-based crowd segmentation. Inspired by this work

Kuhn et al. proposed in [8] a compact and applicable frame-
work that implements Lagrangian concepts for video ana-
lytics. At its core, this framework is based on characterizing
motion as a sequence of optical flow fields v(x, t) to assem-
ble a time-dependent vector field that encodes the dynam-
ics of the video sequence in space-time of a temporal range
[t0, t0 + τ ]. In this work we will follow this framework
where the analysis of the optical flow fields is based on so
called path lines [8]. Path lines can be interpreted as traces
of massless particles advected in the flow fields. Their com-
putation, i.e. advection, is based on the computation of the
flow map φτt0(x) = φ(x, t0, τ) which is a core aspect of
Lagrangian methods. The flow map defines the mapping of
all massless particles at time t0 seeded at the position x0 to
their corresponding positions after an integration time τ :

φτt0 : D → D : φτt0(x0) = x(t : t0,x0), (1)

t0 is the so called frame of reference denoting the basis of
the projection of the path line properties. The flow map
φτt0 is constructed by integrating path lines in the optical
flow fields over τ time steps, i.e. propagating the massless
particles at position xt and time t based on the flow vector
v(xt, t). Since the optical flow fields are discrete in space
and time, trilinear interpolation is applied and the particle
position is updated by:

xt+1 = xt + ṽ(xt, t), (2)

where ṽ denotes the interpolated motion vectors. It is as-
sumed that these path lines characterize the overall dynam-
ics, i.e. motions, and can provide quantitative information
about the observed objects in the scene. Instead of consid-
ering individual trajectories only, this information can be
compactly represented within so called Lagrangian fields.
Examples of Lagrangian fields that have been applied for
video analysis are the arc length field [8] for segmentation
or the direction field for violence detection [12] or action
recognition [1].

One specifically popular type of Lagrangian fields are
Finite-Time Lyapunov Exponents (FTLE) which quantify
the amount of separation between neighboring path lines.
With respect to features in non-linear dynamic systems high
ridges in the FTLE scalar field are assumed to be in close re-
lationship with Lagrangian Coherent Structures [5] (regions
of maximum change over time) that can serve as basic fea-
tures to capture and quantify advanced motion patterns [6].
In the video domain FTLE fields have been successfully
used in crowd segmentation [11, 20, 2], motion anomaly de-
tection [23] and person behaviour analysis [14]. High ridges
are assumed to be in close relationship with motion bound-
aries of physical objects with respect to small and large en-
tities. For the task of crowd segmentation these ridges have
shown to be salient and stable features. On those grounds
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we want utilize FTLE fields to extract the distinct shape of
crowds moving through bottlenecks. The FTLE is derived
from the spatial gradients of the flow map. With

∇φτt0(x) =
∂φτt0(x)

∂x
(3)

being the spatial gradients of the flow map and

µi = ln
√
λi(∇T∇), (4)

the FTLE value for integration time τ is obtained as

FTLEτ (x, t0) =
1

τ
max{µ1, µ2}. (5)

∇T is the transposed of ∇ and λi(∇T∇) denotes the i-
th eigenvalue of the symmetric matrix ∇T∇. In general
the FTLE can be computed in forward and backward di-
rection resulting in the description of FTLE+ and FTLE-
. The forward FTLE field describes regions of repelling
LCS, while features in the backward FTLE describe attract-
ing LCS structures over the considered time scope. Only
the intersections of FTLE+ and FTLE- ridge structures can
segment regions of coherent movement and group invariant
moving areas within the motion field.

3. Video-based Bottleneck Detection
With the proposed method we want to localize the phys-

ical bottlenecks by analyzing person flow patterns around
narrow places. This localization will be based on the seg-
mentation of the crowd flow. We have observed that phys-
ical bottlenecks result in bottlenecks in the contour of the
crowd flow segments. We assume that the shape of crowd
flow segments can be estimated by extracting high ridges in
FTLE fields and propose a long-term analysis of the scene
since the movements in that area can be very small. So
called defects in the contour of the crowd flow shape allow
us to detect salient points that restrict the bottleneck.

Our approach will be composed of three major parts:
the long-term temporal filtered FTLE fields, the crowd flow
contour segmentation and crowd flow contour analysis.

Long-Term Temporal Filtered FTLE: For the calcula-
tion of the crowd flow shape, a long-term analysis of the
scene is of major interest, since the movements in near the
area of the bottleneck can be very small. Figure 1 (top)
shows the FTLE+ field of a rather short integration time
τ = 15. The ridges related to the crowd margin are relative
weak. To assess the crowd margin while the walking speed
of the people is low a large integration interval τ > 100 has
to be used, which requires a high computational effort. In
addition, due to the heterogeneous movement of the people
in the crowd each walking person causes a ridge which be-
comes stronger for large values of τ . However in contrast

a) AGORASET sequence scene04 x1 view1

b) FTLE-

c) FTLE-

Figure 1: Comparison of the FTLE fields estimated in back-
ward direction for τ = 15 containing unsteady and long-
term temporal filtered FTLE (FTLE-). In contrast to the
FTLE- the FTLE- contains more locally unsteady struc-
tures.

to ridges caused by a physical bottleneck and crowd mar-
gins, these ridge structures are not consistent for the frame
of reference at different times.

To cope with the requirement of this long-term surveil-
lance we propose to skip frames, which simply allows to
increase the walking speed of the pedestrian. To remove
local adverse structures caused by individuals and enhance
the global ridge structure of the crowd we propose the long-
term temporal filtered FTLE. This allows to use relative
small integration intervals and reduces the computational
effort while maintaining the global separation lines.

The long-term temporal filtered FTLE can be estimated
as follows. At first we subsample the given image sequence
It with the factor ∆t, where It ∈ {I0, I∆t . . . , In·∆t} with
n ∈ N and compute the optical flow fields in forward and
backward direction:

v+
t ∈ {v0(I0, I∆t), . . . ,vn·∆t(In·∆t, I(n+1)·∆t)}

v−t ∈ {v0(I∆t, I0), . . . ,vn·∆t(I(n+1)·∆t, In·∆t)}. (6)

In a next step we compute the FTLEτ+(x, t0) from the op-
tical flow fields {v+

t0 , . . . ,v
+
t0+τ ·∆t} and FTLEτ−(x, t0) re-

spective from {v−t0 , . . . ,v−t0−τ ·∆t} for the reference frame
at t0 ∈ {0, . . . , n ·∆t}. Please note that the real integration
time is τ ·∆t.
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a) optical flow backward b) optical flow forward

c) FTLE- d) FTLE+

e) crowd flow contour f) validation map

Figure 2: Illustration of crowd flow contour segmentation.
Long-term filtered FTLE fields (c,d) are computed based
on RLOF [13] optical flow (a,b) and lead to the basis of
segmentation map (e) and the validation map (f). In (e) the
combination of forward and backward ridges in the FTLE
fields leads to the crowd flow segment. Only the dominant
ridges with high values that occurs in both FTLE fields are
in (f).

For a given set of τs consecutive FTLE fields we apply
the temporal low-pass filter using median:

FTLE
τ
(x, t0) = median

n∈[0,τs−1]
FTLEτ (x, t0 − n ·∆t). (7)

Figure 1 gives an example of the temporal filtered FTLE. It
can be shown that in contrast to the FTLE the FTLE fields
are less affected by unsteady, temporal local, ridge struc-
tures caused by individual motions and contain features that
are steady on a global temporal scale.

Crowd Flow Contour Segmentation: Figure 2 shows ex-
emplary the extraction of the salient motion boundary con-
tour caused by the crowd flow. We extract ridges with high
and low FTLE values. The low ridge contour will be the
basis to generate possible bottleneck candidates while the
high ridge contour will be used to evaluate the bottleneck
candidates. Both are computed by the binarization of the
temporal filtered FTLE fields based on the two thresholds
σlow and σhigh :

M
(+−)
(low/high) =

{
x | FTLE

τ
(+−)(x) > σ(low/high)

}
. (8)

After dilating all four binary maps to close gaps in the
contours a segmentation map Mseg(x, t0) = M−low(x, t0)∨

a) defects and convex hull b) bottlenecks candidates

c) validated bottlenecks d) density visualisation

Figure 3: Illustration of the crowd flow contour analysis for
bottleneck detection. Bottleneck candidates are selected by
comparing the contour with convex hull (a). Selected candi-
dates (b) are filtered by geometrical filter and the validation
map (c). The visual result can be seen in (d).

M+
low(x, t0) is computed by combining the forward and

backward low ridge maps. The segmentation map con-
tains the contour of the crowd flow and can be prone to
oversegmentation and artifacts. A second validation map
Mval(x, t0) = M−high(x, t0) ∧M+

high(x, t0) will be com-
puted by the overlap of the forward and backward high ridge
maps that contains the most stable ridges of the Lagrangian
fields. The ridges of this map relate to the barriers of the
physical bottleneck. Unless this map can not contain the
complete crowd contour it contains ridges that are at the
bottleneck location with a high probability.

Crowd Flow Contour Analysis: An example of the
crowd flow contour is shown in Figure 3(a). The bot-
tleneck candidates are a set of point tuples C̀t0 =
{(x̀0, x̀1)0

t0 , . . . , (x̀0, x̀1)mt0} that are located at indentations
of the contour (purple dots). The candidates can be located
by computing so called defects. Defects are points com-
puted by evaluating the distance between the contour at its
convex hull [18]. Bottleneck candidates are filtered by two
geometrical constraints between the point pair (x̀0, x̀1)mt0 :

i) The relation dc/ls between euclidean distance dc =
||(x̀0, x̀1)|| and the crowd flow segment contour length ls
has to be below a given threshold σs (see Figure 3(b)). ii)
The relation between the distance of the points on the con-
tour and the euclidean distance has to be greater than 2·dc to
remove point pairs that are likely to be not on opposite loca-
tion of the contour. Finally, the points are projected on the
validation mapMval(x, t0). If the point, as shown in Figure
3(c), contains at least two different ridges within a region of
size σr × σr, which are not on the same contour, the center
point is selected as a bottleneck detection cmt0 = (x0,x1)mt0 .

The detection of candidates can be affected by small
changes of the ridge segmentation which can result in a
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Jülich dataset

AGORASET

Figure 4: Example of the Jülich dataset containing bottle-
necks and the synthetic AGORASET.

missed detection. To remain consistent over time the detec-
tion points (x0,x1)t0 will be propagated to the next frame.
The detection cmt0 will only be accepted if it has been de-
tected along σo ·∆t frames within the same radius σr.

4. Evaluation

In this section, we assess the performance of the
Lagrangian-based bottleneck detection approach. To eval-
uate the results we introduce an appropriate metric for this
novel problem and provide supplemented ground truth for
the existing datasets Jülich and AGORASET which are ap-
plicable to the new use case. The ground truth as well as the
evaluation script are publicly available for future work1.

The evaluation will be based on 76 sequences from the
Jülich dataset and four from the AGORASET2 [3] show-
ing crowds passing bottleneck scenarios. An example of
the used sequences can be found in Figure 4. AGORASET
is a synthetic rendered dataset. It contains different view-
ing angles as well as a high variation of the peoples density
and movement characteristics under constant environmental
conditions. The Jülich dataset is a composition of datasets
related to [10, 15, 16, 22] and published via the pedestrian
dynamics data archive3. Different bottleneck sizes were ex-
amined as well as different social aspects and their conse-
quences under laboratory conditions. This has resulted in
a broad field of data in which no bottleneck is available

1https://github.com/simonmaik/bottleneck-detection-benchmark
2https://www.sites.univ-rennes2.fr/costel/corpetti/agoraset/Site/Scenes.html
3http://ped.fz-juelich.de/da/

Figure 5: Visualization of the localization error εd esti-
mation, the ground truth bottleneck detection (A) and the
ground truth bottleneck mask MGT (framed by green line).
εd is computed by the relation between the distances be-
tween the ground truth detection (A), the estimated detec-
tion’s (B0,B1) and the nearest point to the bottleneck mask
(C0,C1). Each blue line shows the increasing isometric εd.

for longer periods of time or in which different motion se-
quences repeatedly occur due to constrictions of varying
sizes. The presented algorithm detects a bottleneck both
temporally and spatially. The temporal characteristics of
the event were determined under two essential aspects: i)
Pedestrians cross the bottleneck and ii) the individuals of
the crowd try to take the shortest route, which depends on
the density of the crowd’s dependent speed. The last men-
tioned aspect is based on hypotheses describing a crowd,
more details can be found in the work of Hughes [7]. The
characterization is necessary, since a narrowing of individ-
ual persons in our understanding does not represent a bottle-
neck. The central point of the constriction was determined
and carefully annotated after the subjective evaluation by
scientific staff. In order to measure the accuracy while tak-
ing the distortion, camera angle and scaling/height into ac-
count, a binary ground truth mapMGT is created around the
determined point. Whereby MGT only exists at the t points
in time when a bottleneck exists according to the above time
definition. In our evaluation, the detection of a bottleneck
is then treated as a frame-wise binary classification problem
with: True positives TP (mask hit), false positives FP (de-
tection outside mask), true negatives TN (no detection out-
side mask), false negatives FN (no detection inside mask).
The accuracy is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (9)

In order to evaluate the detection spatially, an additional
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Test set Accuracy
All sequences 0.70

Bottleneck and social groups 0.73
Entrance 1 0.83

AGORASET 0.87

Table 1: The Accuracy values for the considered sets shown
in Figure 8 are listed for localization error values εd = 1.

isometric score εd, called localization error, is mapped to
simulate the dilatation/contraction of MGT :

εd =





AB
AB+BC

, if MGT (cmt0 ) = 1

BC
AC

+ 1 , else.

(10)

Point A is the annotated centre of the bottleneck ground
truth MGT . The respective detected points cmt1 are marked
with B1 (inside the ground truth mask MGT ) and B0 (out-
side), and C0, C1 are indicating the nearest corresponding
points on the contour of MGT . The localization error εd is
defined within MGT between [0, 1] and outside MGT be-
tween (1,∞]. Figure 5 shows that εd reaches the value of 0
if a detected point lies within the smallest assumed isomet-
ric contour of MGT . If the detected point lies on the green
contour, εd becomes equal to 1. The results of the evalua-
tion are shown in Figure 8 and shows the achieved accuracy
in dependence of the localization error εd. The higher the
accuracy value, the better the events were detected. The
smaller the localization error, the more accurately the event
was detected spatially.

The accuracy increases in all results with increasing dis-
tance from the optimal point, i.e. with increasing εd. The ar-
rangement in Figure 8 from left to right shows different pa-
rameter tests. The Accuracy for a Localization Error value
of εd = 1 with the best settings are listed in Table 1. Fig-
ure 8 (top) shows the evaluation results for all 80 sequences.
The results for the entire test dataset show that the proposed
method performs well within the ground truth (εd = 1) with
an accuracy value of 0.7. The neighborhood of the optimal
point of the bottleneck (εd = 0) could be reached with an
accuracy value of 0.4. Visual results can be seen in Figure
6. Furthermore, it becomes clear that the results for a small
integration time τ (Figure 8 (top, left) are in accordance
with the method, because a small τ also means a lower cal-
culation effort for the calculated path lines. Seen over all
sequences, the buffer size parameter τs seems to have the
smallest effect. This is due to the length of the AGO-
RASET sequences. The larger the buffer, the more stable
the results can be. However, by averaging the FTLE values
with the help of the median, the method becomes sluggish,
so that the buffer size also presents itself as a limitation of
the system. The result of the partial sequence Entrance 1
(Figure 8) shows a different effect regarding to the buffer
size. For the largest buffer value, the best result is obtained

Figure 6: Detection results of the method for the sequences
Bottleneck and social groups 01 02 (left) and Entrance 1,
entry without guiding barriers (semicircle setup) (right). At
the beginning of the sequences there is no bottleneck (top).
In the later part of the sequence the crowd starts running
respectively the gate is opened.

scene04 x1 view1 scene04 x1 view2

scene04 x4 view1 scene04 x4 view2

Figure 7: Detection result of the method for the same time
of the escape sequences of AGORASET, at different view-
ing angles and same parameters.

here. The sequence is very long and only at the end of the
sequence an entry is opened, which represents the bottle-
neck. A large buffer has more frames of reference, so that
many small movements of the group can be caught, which
can lead to errors with smaller buffers. In the evaluation of
the radius σr it turns out that a smaller value σr = 30 over
all sequences achieves the best result. This is due to the
number of detected bottlenecks. A large radius for the ROI
can also enclose unrelated ridges in the validation map. Cer-
tainly there are also sequences in the test dataset which have
very large bottlenecks related to the image content. The fil-
ter fails because the ridges in the validation map cannot be
included at all.

Figure 7 shows the result of the AGORASET escape se-
quences for the same point in time from two different per-
spectives. The outcome emphasizes that the presented pro-
cedure can act independently of the point of view.
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Figure 8: The figure shows the results of the bottleneck detector related to the accuracy value and the localization error. The
arrangement from left to right shows the results of the parameter tests: integration time τ (left), buffer size τs (middle) and
radius σr (right). The plots at the top show the results for all sequences, below are the results for the sequences of the subsets
Bottleneck and social groups and the single sequence Entrance 1, entry without guiding barriers (semicircle setup) . The
results for the four escape sequences of the AGORASET dataset are shown at the bottom of this figure. The order within the
legends arranges the results after the accuracy at the position εd = 1. The accuracy value at this position is given in brackets.
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5. Conclusion
In this paper we presented a novel video-based bot-

tleneck detection method for crowded scenes based on
the evaluation of characteristic stowage patterns in crowd-
movements. We utilized the proposed long-term temporal
filtered Finite Time Lyapunov Exponents (FTLE) fields for
a global segmentation of the crowd flow, which enables to
extract its deformations. Furthermore we showed that high
ridges in the FTLE field indicate Lagrangian features that
are assumed to be located at bottlenecks.

Ground truth data was generated for 80 tested sequences,
which were evaluated in dependence of the localization er-
ror. The results show that the method can detect bottleneck
events spatially and temporally well for both natural and
synthetic data. Our method is independent from camera an-
gle and distortion, but is currently limited in the width of
the bottleneck due to a fixed size of the region of interest.
For future work, an adaptive adjustment of the search area
is planned, whereby the current restriction will be solved.
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