journal paper


JournalIEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
Volume22
Issue/Number9
PublisherIEEE
Pages1377--1387
DateSeptember 2012
Author(s)Tobias Senst, Volker Eiselein, Thomas Sikora
TitleRobust Local Optical Flow for Feature Tracking
AbstractThe presented work is motivated by the problem of local motion estimation via robust regression with linear models. In order to increase the robustness of the motion estimates we propose a novel Robust Local Optical Flow approach based on a modified Hampel estimator. We show the deficiencies of the least squares estimator used by the standard KLT tracker when the assumptions made by Lucas/Kanade are violated. We propose a strategy to adapt the window sizes to cope with the Generalized Aperture Problem. Finally we evaluate our method on the Middlebury and MIT dataset and show that the algorithm provides excellent feature tracking performance with only slightly increased computational complexity compared to KLT. To facilitate further development the presented algorithm can be downloaded from http://www.nue.tu-berlin.de/menue/forschung/ projekte/rlof/.
Key wordsmultimedia analysis, KLT, Robust Estimation, Feature Tracking, Hampel, Long-Term Trajectories, Optical Flow, RLOFLib
NoteISSN={1051-8215},
DOI=10.1109/TCSVT.2012.2202070
File1349Senst2012.pdf

[BibTeX]