conference paper


Conference/Proceedings6th IET International Conference on Imaging for Crime Detection and Prevention
Start date15.07.2015
End date17.07.2015
AddressUK, London
EditorGeorgios Chaitas, Sergio A Velastin
PublisherIET Digital Library
Pages1-6
Author(s)Tobias Senst, Volker Eiselein, Thomas Sikora
Title[Best Paper Award] A Local Feature based on Lagrangian Measures for Violent Video Classification
AbstractLagrangian theory provides a diverse set of tools for continuous motion analysis. Existing work shows the applicability of Lagrangian method for video analysis in several aspects. In this paper we want to utilize the concept of Lagrangian measures to detect violent scenes. Therefore we propose a local feature based on the SIFT algorithm that incooperates appearance and Lagrangian based motion models. We will show that the temporal interval of the used motion information is a crucial aspect and study its influence on the classification performance. The proposed LaSIFT feature outperforms other state-of-the-art local features, in particular in uncontrolled realistic video data. We evaluate our algorithm with a bag-of-word approach. The experimental results show a significant improvement over the state-of-the-art on current violent detection datasets, i.e. Crowd Violence, Hockey Fight.
Key wordsmultimedia analysis, violent video detection, local feature, action recognition, lagrangian measures, lagrangian framework
NoteISBN: 978-1-78561-131-5
File1479Senst2015.pdf

[BibTeX]